a2 United States Patent

US009171097B2

(10) Patent No.: US 9,171,097 B2

Ceze et al. (45) Date of Patent: Oct. 27,2015
(54) MEMOIZING WEB-BROWSING USPC ..c.ocevven. 715/234-236, 241, 242, 273, 277
COMPUTATION WITH DOM-BASED See application file for complete search history.
ISOMORPHISM (56) References Cited
(75) Inventors: Luis Ceze, Santa Clara, CA (US); U.S. PATENT DOCUMENTS
Gheorghe C. Cascaval, Santa Clara, CA
(US); Bin Wang, Fremont, CA (US); 6,377,957 Bl* 4/2002 Jeyaraman 707/625
Michael P. Mahan, San Diego, CA 6,397,217 B1* 5/2002 Melbinccccoeovviviinininnnnn. 1/1
(US); Chettan S. Dhillon, San Diego, (Continued)
CA (US); Wendell Ruotsi, San Diego,
CA (US); Vikram Mandyam, San FOREIGN PATENT DOCUMENTS
Diego, CA (US)
CN 101019114 A 8/2007
(73) Assignee: QUALCOMM Incorporated, San EP 1406183 A2 4/2004
Diego, CA (US) (Continued)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Ramaswarmy et al, “Automatic Fragment Detection in Dynamic Web
U.S.C. 154(b) by O days. Pages and its Impact on Caching”, publisher: IEEE computer society,
published: 2005, pp. 859-874.*
(21) Appl. No.: 13/096,131 (Continued)
(22) Filed: Apr. 28, 2011 Primary Examiner — Wilson Tsui
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Ryan N. Farr
US 2011/0258532 Al Oct. 20, 2011 7 . ABSTRAC.T .
Methods and devices for accelerating webpage rendering by
Related U.S. Application Data a browser store document object model (DOM) tree struc-
] o o tures and computations of rendered pages, and compare por-
(63) Continuation-in-part of application No. 12/730,967, tions of a DOM tree of pages being render to determining if
filed on Mar. 24, 2010. portions of the DOM tree structures match. If a DOM tree of
(60) Provisional application No. 61/248,909, filed on Oct. a webpage to be rendered matches a DOM tree stored in
6, 2009, provisional application No. 61/165,238, filed memory, the computations associated with the match DOM
on Mar. 31. 2009. tree may be recalled from memory, obviating the need to
’ perform the calculations to render the page. A tree isomor-
sm algorithm may be used to recognize trees store:
(51) Int.CL phism algorithm may be used gnize DOM d
GO6F 1727 (2006.01) in memory that match the DOM tree of the webpage to be
GO6F 17/30 (2006.01) rendered. Reusing rendering computations may significantly
GO6F 17/22 (2006.01) reducing the time and resources required for rendering web
(52) US.CL pages. Identifying reusable portions of calculation results
CPC v GOGF 17/30902 (2013.01) based onDOM tree isomorphism enables the browser to reuse
(58) Field of Classification Search stored webpage rendering calculations even when URLs do
CPC ... GOGF 17/30902; GOGF 17/2247; Goep Mot mateh.

17/30896; GOGF 17/2211; GOGF 17/30899

28

44 Claims, 21 Drawing Sheets

30 74

Page — st Instance | [Page - 2nd Instance Page — 3rd Instance

DOM #1 DOM #2 DOM #3

US 9,171,097 B2
Page 2

(56)

6,606,525
6,635,089
6,826,726
6,976,211
7,047,318
7,062,709
7,100,112
7,386,786
7,403,951
7,584,417
7,594,001
7,624,160
7,660,950
7,712,025
7,739,657
7,870,502
8,037,081
8,055,685
8,250,457
2002/0004813
2002/0133627
2002/0184264
2002/0194388
2003/0001893
2003/0025728
2003/0046365
2003/0189593
2003/0217169
2004/0123236
2004/0168122

2006/0064636
2006/0129635
2006/0136371

References Cited
U.S. PATENT DOCUMENTS

Bl 8/2003 Muthuswamy et al.

Bl 10/2003 Burkett et al.
B2 11/2004 Hsing et al.
B2 12/2005 Lection et al.
Bl 5/2006 Svedloff

B2* 6/2006 Cheung

B1 8/2006 Winser
B2 6/2008 Davis et al.

B2* 7/2008 Setluretal.

B2 9/2009 Friend et al.

Bl 9/2009 Ebbo et al.

B2 11/2009 Henderson et al.
B2 2/2010 Miller et al.

B2 5/2010 Roessler

B2 6/2010 Rolfs et al.

B2 172011 Rogers et al.

B2
B2
B2 8/2012 Fainberg et al.
Al 1/2002 Agrawal et al.
Al 9/2002 Maes et al.
Al 12/2002 Berget al.

Al 12/2002 Boloker et al.
Al 1/2003 Haley

Al 2/2003 Ebbo et al.

Al 3/2003 Pfister et al.
Al 10/2003 Yarvin

* %

Al* 11/2003 Jamesetal.

Al 6/2004 Cheung
Al* 82004 Kobipalayam

Murugaiyan

Al 3/2006 Hua et al.
Al 6/2006 Baccou et al.
Al 6/2006 Yuan et al.

10/2011 Douglis et al.
11/2011 Timmons

...... 715/234

.............. /1

...... 707/755
...... 707/803

...... 709/231

...... 715/513

2006/0200535 Al 9/2006 Moser

2007/0240041 Al* 10/2007 Pearson 715/522
2009/0037517 Al 2/2009 Frei

2009/0063500 Al1* 3/2009 Zhaietal. ... 707/10
2010/0005053 Al 1/2010 Estes

2010/0017696 Al 1/2010 Choudhary et al.

2010/0262780 Al 10/2010 Mahan et al.

2010/0268773 Al 10/2010 Hunt

2011/0029641 Al 2/2011 Fainberg et al.

2012/0226972 Al 9/2012 Fainberg et al.

2012/0303697 Al 11/2012 Alstad

FOREIGN PATENT DOCUMENTS

JP 2005215950 A 8/2005

JP 2006031476 A 2/2006

JP 2007536655 A 12/2007

JP 2009508220 A 2/2009

WO 2005106710 Al 11/2005

WO WO-2010117748 A2 10/2010
OTHER PUBLICATIONS

Ali Mesbabh et al. “Migrating Multi-page Web Applications to Single-
page AJAX Interfaces,” Software Maintenance and Reengineering,
2007. CSMR ’07. 11* European Conference on, IEEE, p. 1, Mar. 1,
2007, pp. 181-190, XP031070581, ISBN: 978-0-7695-2802-1 p.
181-p. 183.

International Search Report and Written Opinion—PCT/US2010/
029124, Interntional Search Authority—Furopean Patent Office—
Dec. 1,2010).

Zhang, et al., “Smart caching for web browsers,” WWW 2010, Full
Paper, Apr. 26-30, 2011, Raleigh, NC, USA, pp. 491-500.
International Search Report and Written Opinion—PCT/US2012/
033344—ISA/EPO—1Jul. 12, 2012.

* cited by examiner

US 9,171,097 B2

Sheet 1 of 21

Oct. 27, 2015

U.S. Patent

~9¢

'
1| edunosay

€l

goM

aoue)suU| puz — abed

90IN0S9Y

Qe 0C

aoue)su| 1s| — abed

gz

JoAleg

ele(

JoAles
qsm

L "OId

SMOMION
SUOREDIUNWWOYD

Ll

——

01~

auibug Buuspuay ZS
auibug Bundussg S
[T T T T T T T e m e T E T e E s E s mm A
oo WOAMeN___ . -6e
uood aoue)su|
871 aweulg pajsenbay [¢
| | |
uood | _ aouejsu| L.
@T,_r olweuAqg |_ I_r pai0ls |_ i
uonJod aneis Zy
Jojelsy| 14 ge
NOQ paleys
Jauluwalaq yolew 9¢
¥S aoueisu| - 1sanbay ~2¢ oL
auibug gopp
jusuodwon [euod Zl
aoueisu| sbed paAe|dsig el
Aeidsig Bk

a21ne(Jeyndwon

U.S. Patent Oct. 27, 2015 Sheet 2 of 21 US 9,171,097 B2

Ve 28 Ve 30 / 74
Page — 1st Instance Page — 2nd Instance Page — 3rd Instance

DOM #1 DOM #2 DOM #3

68 70 100 12 108 110

'

Shared DOM

F

2 9
62
2N
50 122
~ra d
(02)) (i)
124 , 126 J
AN (TN
128 , 130

- i ~—

\\}E
y/ dy &

FIG. 2

U.S. Patent Oct. 27, 2015 Sheet 3 of 21 US 9,171,097 B2

/10
Computer Device
e 156 f14
User Interface Web Engine
/158 /160
162
Input(s) Output(s) [| | m=—=—== === L -
| Fetching Manager |
F152
Memory 153 /166
- Content Handler
Computer Device Cache
168
fm——————— — 1% m—T=== L
| Derivative Cache Processing |
I f157 | L Instructions |
| o LT T T T T T T
I Derivative Content I f169
. - | _———— - A
| Structure Reference |
159 b—————— -
I Structured Cache |
L __ I
164
f151 _______ C_ A
| Derivation Manager |
Raw Content L - 4
50
- 150 — : L
Scripting Engine
Processor
/52
12 Rendering Engine
Portal Component
P / 154
Communications Module

FIG. 3

U.S. Patent Oct. 27, 2015 Sheet 4 of 21 US 9,171,097 B2

170

™

/172

Receiving a request for a requested instance of a page

l /174

Determining if the requested instance of the page
corresponds to a document object model (DOM) for the
page stored in a memory

1 g

Referencing a dynamic portion of the DOM corresponding
to the requested instance if the requested instance of the
page corresponds to the DOM stored in the memory

1

Storing the dynamic portion of the DOM corresponding to the
requested instance of the page in a relationship with the
static portion of the DOM

| Rendering the requested instance of the page according to |
| the static portion of the DOM and the dynamic portion of the |
DOM corresponding to the requested instance of the page :

FIG. 4

U.S. Patent

Portal
Component Engine

202

Oct. 27, 2015

Computer Device
Web

206
] ’5

Sheet 5 of 21

US 9,171,097 B2

Scripting Rendering
Engine

Engine

.

208

Display

Web
Server

Y

~. l— — — —|— —

e.szzs

210

226

218
—

Y

N
230

5232

-t
-

A

234

22
fO

"

—»
222

224
-

238

Data
Server

Y

A

244

——1 ™ 246
)

240

264
e

266_
)

A

9
252 248

4——————

254

e 256

258

. ~260
s

262

St
1
Instance

of Page

FIG. 5

U.S. Patent Oct. 27, 2015 Sheet 6 of 21 US 9,171,097 B2

- Computer Device >
Portal Web Scripting Rendering Displa Web Data
Component Engine Engine Engine PaY " server Server
_ | ~3086
{ - { '5
302 304
316t
318
<———————l‘—>f320
‘)
326
by S328
R
3%0 322 -'f
> 332 “

336 3
E 334

337 338
M

N
Y

A

{341~ 340

Y

s o

7

w

&
Y/
A

348
<352
> 354
e — — |- — L | 358
‘)
364~ |
‘al T T ’-\fsao
358 |4
366?_ 362
} N
2I’1d
Instance
of Page

FIG. 6

U.S. Patent Oct. 27, 2015 Sheet 7 of 21

/1002

RECEIVE RAW CONTENT

NO

CONTENT
CANDIDATE FOR LOCAL
PROCESSING?

f1 008

GENERATE LOCALLY
PROCESSED DERIVATIVE(S)

l f1010

STORE DERIVATIVE(S) AND
OPTIONALLY RECEIVED
CONTENT IN CACHE

FIG. 7

US 9,171,097 B2

1000

/1006

CACHE
RECEIVED
CONTENT

U.S. Patent Oct. 27, 2015 Sheet 8 of 21 US 9,171,097 B2

1102 1100

1 1104

RECEIVE RAW CONTENT WITH
PROCESSING INSTRUCTIONS

PROCESSING CACHE
INSTRUCTIONS RECEIVED
DETECTED? CONTENT

/1110

PROVIDE CONTENT HANDLER
RECEIVED CONTENT WITH
PROCESSING INSTRUCTIONS

l /1112

GENERATE LOCALLY
PROCESSED DERIVATIVE(S)
USING PROCESSING
INSTRUCTIONS

l /1114

STORE DERIVATIVE(S), AND
OPTIONALLY RECEIVED
CONTENT AND PROCESSING
INSTRUCTIONS

FIG. 8

U.S. Patent Oct. 27, 2015 Sheet 9 of 21 US 9,171,097 B2

Ve 902

RECEIVE SEMANTICALLY /\/
OPAQUE CONTENT

900

- 906
STRUCTURED CACHE
o RECEIVED
' CONTENT

908
DETERMINE ASSOCIATED
STRUCTURE
910

STORE WITH REFERENCE TO
KNOWN STRUCTURE

¥ f912

RECEIVE REQUEST FOR
PORTION OF CONTENT

914

RETRIEVE PORTION OF STORED
CONTENT ACCORDING TO
REQUEST

FIG. 9

U.S. Patent

500

Oct. 27, 2015

Sheet 10 of 21

9504

US 9,171,097 B2

™

502 7 ™

506 [

5065~ |

506¢ |

506A |

)

<

——

Browse All

Game
Icon

) N —

Games

 EE—

Featured
lcon

——

Featured

New This
Week

Icon

New This Week

Best

Sellers

Icon

Best Sellers

)

Business
Icon

~~—

Business

)
Recom.
lcon

Recommended

Music
Icon

Music

FIG. 10

U.S. Patent Oct. 27, 2015 Sheet 11 of 21 US 9,171,097 B2
600 604
e
602 < New This Week
 —
o — N
606 All Games
—)——‘—6123
L 614
610 ———— — 2163
] Game #1 Game #1 Name 6.99 —
6084~ | Icon Company Name No Ratings/ L6120
-~ J)'—_
—— Y 1614b
1| |Game#2 Game #2 Name $9.99 .
608b Icon Company Name No Ratings
\) —1—612c
)
—+] |Game #3 Game #3 Name $1.99 .
608c lcon Company Name No Ratings
.~ Y
— A)
. Game #4 Game #4 Name $1.99
Icon Company Name No Ratings | L 612e
. ~—
 m—)
. Game #5 Game #5 Name $4.99 .
Icon Company Name sese % %%
. D— J
—)
. Game #6 Game #6 Name $1.99 .
lcon Company Name No Ratings
. — J
~ []
. Game #7 Game #7 Name $1.99
Icon Company Name No Ratings *
. h— J
~ [~612n
’_\ 1
1| |Game#s Game #8 Name $1.99— [["614n
608n Icon Company Name No Ratings
~ y,

FIG. 11

U.S. Patent Oct. 27, 2015 Sheet 12 of 21 US 9,171,097 B2
700\\
| ———714
702 |
° e
Game #5 Name
704—~ €47 #| Company Name —— 708
No Ratings
710
$4.99
Purchase
Game #5 Icon
PAN
(PLAY)
(— OPTIONS) 112
(HELP)
SELECT %
Game #5 Information
—720
Rate This Item
More Like This
Game Game Game L ——716
#10 #9 #8
lcon Icon Icon
Game #10 Name Game #9 Name Game #8 Name
Company Name Company Name Company Name
No Ratings No Ratings **%%%

FIG. 12

U.S. Patent Oct. 27, 2015 Sheet 13 of 21 US 9,171,097 B2
800
L —814
802 /’/_\\806
Game Game #10 Name
8041 #10 Company Name
lcon No Ratings

[

$7.99 810
Purchase
Game #10
Screen
Shot
| ——812
Pause
Game #10 Information
—— 820
Rate This Item
818~ Game Game Game 816
#10 #9 #8
Ilcon Ilcon Icon

Game #10 Name Game #9 Name Game #8 Name
Company Name Company Name Company Name

No Ratings No Ratings **%*%

FIG. 13

U.S. Patent Oct. 27, 2015 Sheet 14 of 21 US 9,171,097 B2

400
r 402

Vs 404

Means for receiving a request for a requested instance of a page

Ve 406

Means for determining if the requested instance of the page
corresponds to a document object model (DOM) for the page
stored in a memory

Ve 408

Means for referencing a dynamic portion of the DOM
corresponding to the requested instance if the requested instance
of the page corresponds to the DOM stored in the memory

410

Means for storing the dynamic portion of the DOM corresponding
to the requested instance of the page in a relationship with the
static portion of the DOM

412
S -

Means for rendering the requested instance of the page according
to the static portion of the DOM and the dynamic portion of the

I
I
I
| DOM corresponding to the requested instance of the page

Memory

FIG. 14

U.S. Patent Oct. 27, 2015 Sheet 15 of 21 US 9,171,097 B2

1500

paragraph

FIG. 15

U.S. Patent Oct. 27, 2015 Sheet 16 of 21 US 9,171,097 B2

1500

1610
Z

1. x, y, width, height
2. X, y, width, height
3. x, y, width, height

n. x, y, width, height

paragraph

FIG. 16

U.S. Patent Oct. 27, 2015 Sheet 17 of 21 US 9,171,097 B2

1700
Receive HTML — 1702
Parse HTML and Create
DOM 1704
1708 l
\
Cache — | Process DOM —— 1706
Computation
Results I
Compose ~— 1710
Display L~ 1712

FIG. 17

U.S. Patent

No

US 9,171,097 B2

‘}800

— 1812

Oct. 27, 2015 Sheet 18 of 21
Receive/recall HTML f~—— 1802
r i
Parse HTML & create
portion of DOM tree [~ 1804
DOM
tree portion matches
1806 cached DOM tree
indices? Yes
Recall cached
computation results
corresponding to
matched DOM index
1808 ~—]|Process DOM tree and
perform computations
l No Key
Cache computation and input data of cached
1810 ~ results indexed to the results same as
executed portion of the in page?
DOM tree

All

computations recalled or
completed?

Yes

v

Compose page

'

Display page

Yes

1816

— 1818

— 1820

FIG. 18

1814

U.S. Patent

19%

Oct. 27, 2015

Sheet 19 of 21

US 9,171,097 B2

Receive HTML — 1902
Parse HTML and Create
DOM — 1904
1906 1908 l 77777777
‘F 7777777777777777777 ~— 1920
| Process and Compare to
Cache — Cached Trees)

1700

Create,
Process, and/or
Store DOM tree

No

Pull Data from Cache

)

1914

Data Validated?

1916 —~— Compose
1918 —~— Display

FIG. 19

1700

Create,
Process, and/or
Store DOM tree

U.S. Patent Oct. 27, 2015 Sheet 20 of 21 US 9,171,097 B2

FIG. 20

US 9,171,097 B2

Sheet 21 of 21

Oct. 27, 2015

U.S. Patent

400

)

FIG. 21

US 9,171,097 B2

1
MEMOIZING WEB-BROWSING
COMPUTATION WITH DOM-BASED
ISOMORPHISM

RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser. No. 12/730,967, entitled “Apparatus and
Methods for Rendering a Page” filed Mar. 24, 2010, which
claims the benefit of priority to U.S. Provisional Application
No. 61/248,909 entitled “Apparatus and Methods of Render-
ing a Page” filed Oct. 6, 2009, and U.S. Provisional Applica-
tion No. 61/165,238 entitled “Method and Apparatus for
Facilitating Efficient Local Caching” filed Mar. 31, 2009, all
of which are assigned to the assignee hereof and are hereby
incorporated by reference in their entirety.

FIELD OF THE INVENTION

The following description relates generally to computing
device communications, and more particularly to apparatus
and methods of rendering a page.

BACKGROUND

A rendering of a page, such as a web page, on a computing
device is affected by a document object model (DOM) tree of
the page. The DOM tree defines one or more nodes in child-
parent relationships, including properties and/or attributes of
the respective DOM node and its style attributes. When a page
is launched, its .html files are read from a cache, parsed, a
DOM tree is constructed, and then embedded or an external
cascading style sheet (css) is applied. These operations are
performed every time a page is loaded, which takes a signifi-
cant amount of time, thereby leading to a less than satisfac-
tory user experience.

Moreover, this amount of time is exacerbated in a resource-
constrained environment, such as with a mobile computing
device, e.g. a mobile phone, personal digital assistant (PDA)
or other relatively small, portable devices having relatively
limited processing capability, memory, and/or communica-
tions throughput when compared to a non-mobile computing
device. Thus, the user experience suffers even more with a
mobile computing device.

Therefore, improvements in rendering of a page are
desired.

SUMMARY

The following presents a simplified summary of one or
more aspects in order to provide a basic understanding of such
aspects. This summary is not an extensive overview of all
contemplated aspects, and is intended to neither identify key
or critical elements of all aspects nor delineate the scope of
any or all aspects. Its sole purpose is to present some concepts
of'one or more aspects in a simplified form as a prelude to the
more detailed description that is presented later.

One aspect relates to a method for rendering a page on a
computer device. The method may include receiving, at a
computer device, a request for a requested instance of a page.
In addition, the method may include determining if the
requested instance of the page corresponds to a document
object model (DOM) for the page stored in a memory. The
DOM stored in memory corresponds to a stored instance of
the page and comprises a static portion that is the same for
both the stored instance and the requested instance of the
page. Further, the method may also include retrieving a

20

25

30

40

45

50

55

60

65

2

dynamic portion of the DOM corresponding to the requested
instance if the requested instance of the page corresponds to
the DOM stored in the memory. The dynamic portion is
unique to the requested instance of the page. Moreover, the
method may include storing the dynamic portion of the DOM
corresponding to the requested instance of the page in a
relationship with the static portion of the DOM.

Another aspect relates to at least one processor configured
to render a page on a computer device. The processor may
include a first module for receiving, at a computer device, a
request for a requested instance of a page. The processor may
also include a second module for determining if the requested
instance of the page corresponds to a document object model
(DOM) for the page stored in a memory. The DOM stored in
memory corresponds to a stored instance of the page and
comprises a static portion that is the same for both the stored
instance and the requested instance of the page. In addition,
the processor may include a third module for retrieving a
dynamic portion of the DOM corresponding to the requested
instance if the requested instance of the page corresponds to
the DOM stored in the memory. The dynamic portion is
unique to the requested instance of the page. The processor
may also include a fourth module for storing the dynamic
portion of the DOM corresponding to the requested instance
of the page in a relationship with the static portion of the
DOM.

Yet another aspect relates to a computer program product
for rendering a page on a computer device. The computer
program product may include a computer-readable medium
including at least one instruction for causing a computer to
receive, at a computer device, a request for a requested
instance of a page. The computer-readable medium may also
include at least one instruction for causing a computer to
determine if the requested instance of the page corresponds to
a document object model (DOM) for the page stored in a
memory. The DOM stored in memory corresponds to a stored
instance of the page and comprises a static portion that is the
same for both the stored instance and the requested instance
of the page. The computer-readable medium may further
include at least one instruction for causing a computer to
retrieve a dynamic portion of the DOM corresponding to the
requested instance if the requested instance of the page cor-
responds to the DOM stored in the memory. The dynamic
portion is unique to the requested instance of the page. More-
over, the computer-readable medium may also include at least
one instruction for causing a computer to store the dynamic
portion of the DOM corresponding to the requested instance
of the page in a relationship with the static portion of the
DOM.

Another aspect relates to an apparatus. The apparatus may
include means for receiving, at a computer device, a request
for a requested instance of a page. In addition, the apparatus
may include means for determining if the requested instance
of'the page corresponds to a document object model (DOM)
for the page stored in a memory. The DOM stored in memory
corresponds to a stored instance of the page and comprises a
static portion that is the same for both the stored instance and
the requested instance of the page. The apparatus may also
include means for retrieving a dynamic portion of the DOM
corresponding to the requested instance if the requested
instance of the page corresponds to the DOM stored in the
memory. The dynamic portion is unique to the requested
instance of the page. The apparatus may further include
means for storing the dynamic portion of the DOM corre-
sponding to the requested instance of the page in a relation-
ship with the static portion of the DOM.

US 9,171,097 B2

3

Still another aspect relates to an apparatus for rendering a
page on a computer device. The apparatus may include a
portal component configured to receive a request for a
requested instance of a page. The apparatus may also include
a web component configured to determine if the requested
instance of the page corresponds to a document object model
(DOM) for the page stored in a memory. The DOM stored in
memory corresponds to a stored instance of the page and
comprises a static portion that is the same for both the stored
instance and the requested instance of the page. Additionally,
the apparatus may include the web component configured to
retrieve a dynamic portion of the DOM corresponding to the
requested instance if the requested instance of the page cor-
responds to the DOM stored in the memory. The dynamic
portion is unique to the requested instance of the page. The
apparatus may further include the web component configured
to store the dynamic portion of the DOM corresponding to the
requested instance of the page in a relationship with the static
portion of the DOM.

The described aspects relate to a method, apparatus or
computer program product for rendering a page on a com-
puter device, comprising actions, means for or instructions
for receiving, at a computer device, a request for a requested
instance of a page; determining if the requested instance of
the page corresponds to a document object model (DOM) for
the page stored in a memory, wherein the DOM stored in
memory corresponds to a stored instance of the page and
comprises a static portion that is the same for both the stored
instance and the requested instance of the page, retrieving a
dynamic portion of the DOM corresponding to the requested
instance if the requested instance of the page corresponds to
the DOM stored in the memory, wherein the dynamic portion
is unique to the requested instance of the page, and storing the
dynamic portion of the DOM corresponding to the requested
instance of the page in a relationship with the static portion of
the DOM, and, optionally, for rendering the requested
instance of the page according to the static portion of the
DOM and the dynamic portion of the DOM corresponding to
the requested instance of the page.

Other aspects relate to re-using computations of web-
browsers by associating stored page rendering computations
with DOM tree structure and identifying reusable calcula-
tions by recognizing a stored DOM tree pattern that matches
at least a portion of a DOM tree of a page to be rendered.
These aspects improve performance of a browser by enabling
reuse HTML processing computations, in addition to the
traditional caching of the HTML data, so they can be reused
when rendering future pages even when the URL of page of
saved computations is not the same as the current page to be
rendered. In such aspects, The method for rendering a page on
a computing device may include receiving, in a processor of
the computing device, a request to display a web page, receiv-
ing HTML code corresponding to the requested web page,
parsing the received HTML code to generate a document
object model (DOM) tree, determining if a portion of gener-
ated DOM tree is isomorphic with one or more portions of a
DOM tree stored in memory, retrieving from memory previ-
ously stored calculations associated with isomorphic portions
of the DOM trees when it is determined that a portion of
generated DOM tree is isomorphic with one or more portions
of a DOM tree stored in memory, composing the requested
webpage using the retrieved calculations, and displaying the
requested web page on an electronic display of the computing
device. In such a method, determining if a portion of gener-
ated DOM tree is isomorphic with one or more portions of a
DOM tree stored in memory may include comparing the
generated DOM tree with DOM tree structures stored in

40

45

55

4

memory using a tree isomorphism comparison algorithm,
determining if the portion of the generated DOM tree has a
structure that is identical to one or more portions of DOM
trees stored in memory, or determining if the portion of the
generated DOM tree is structurally similar to one or more
portions of the DOM tree stored in the memory. In an aspect,
retrieving from memory previously stored calculations asso-
ciated with isomorphic portions of the DOM trees may
include accessing a cache mechanism that stores the compu-
tation results of the portions of the DOM trees such that they
are indexed by a computed hash value based on a DOM
sub-tree structure corresponding to portions of the DOM
trees.

In an aspect, the method may further include determining
whether key values and input values used to create computa-
tion results of a DOM tree in memory equal key values and
input values of the generated DOM tree, in which case retriev-
ing from memory previously stored calculations associated
with isomorphic portions of the DOM trees may be perform
only when it is determined that the key values and input
values used to create computation results of a DOM tree in
memory equal key values and input values of the generated
DOM tree. Also, the method may further include completing
HTML code computations for the generated DOM tree when
it is determined that the generated DOM tree is not isomor-
phic with any of the one or more portions of the DOM tree
stored in memory, and storing the results of the HTML com-
putations indexed with the generated DOM tree in memory. In
such an aspect, storing the generated DOM tree may include
storing at least a portion of the generated DOM tree in a
key-value data structure in which DOM tree elements are
stored in association with corresponding HTML computation
results, in which case the structured cache may be imple-
mented using a hash-map data structure, and the key-value
data structure may include a hash-map data structure. In such
an aspect, retrieving previously stored calculations from the
memory may include evaluating hash-keys associated with
nodes of the stored DOM tree that are isomorphic with the
portion of the generated DOM tree.

Other aspects relate to computing devices comprising a
processor configured with processor-executable instructions
to perform operations of the foregoing methods. Further
aspects relate to computing devices comprising means for
accomplishing the functions of the foregoing methods. Still
further aspects relate to non-transitory computer readable
storage media having stored thereon processor-executable
instructions configured to cause a processor of a computing
device to perform operations of the foregoing methods.

To the accomplishment of the foregoing and related ends,
the one or more aspects comprise the features hereinafter
fully described and particularly pointed outin the claims. The
following description and the annexed drawings set forth in
detail certain illustrative features of the one or more aspects.
These features are indicative, however, of but a few of the
various ways in which the principles of various aspects may
be employed, and this description is intended to include all
such aspects and their equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and constitute part of this specification, illustrate
exemplary aspects of the invention. Together with the general
description given above and the detailed description given
below, the drawings serve to explain features of the invention
not to limit the disclosed aspects.

US 9,171,097 B2

5

FIG. 1 is a schematic diagram of an aspect of a system for
rending a page.

FIG. 2 is a schematic diagram of an aspect of a shared
DOM.

FIG. 3 is a schematic diagram of an aspect of a computer
device of FIG. 1.

FIG. 4 is a flowchart of an aspect of a method of rending a
page.

FIG. 5 is a flowchart of an aspect of rendering a first
instance of a page.

FIG. 6 is a flowchart of an aspect of rendering a second
instance of a page.

FIG. 7 is an exemplary method for facilitating efficient
local caching according to an aspect.

FIG. 8 is an exemplary method for facilitating content
modification through processing instructions before storage
in cache, according to one aspect.

FIG. 9 is an exemplary method for facilitating structured
storage in cache, according to one aspect.

FIG. 10 is a schematic diagram of an example main page in
accordance with an aspect.

FIG. 11 is a schematic diagram of an example catalog page
in accordance with an aspect.

FIG. 12 is a schematic diagram of an example of an item
detail page in accordance with an aspect.

FIG. 13 is a schematic diagram of another example of an
item detail page in accordance with an aspect.

FIG. 14 is a schematic diagram of an aspect of an apparatus
for rendering a page.

FIG. 15 is a schematic diagram of a sample DOM tree
generated by a browser parsing HTML code for a requested
webpage.

FIG. 16 is a schematic diagram of a sample DOM tree
having calculated values stored for each node.

FIG. 17 is a flowchart of an aspect method for creating,
processing, and storing the DOM tree on a first execution of a
browser and/or first occurrence of a web page having an
unidentified DOM structure.

FIG. 18 is a flowchart of an aspect method for creating,
processing, storing, and/or retrieving portions of a DOM tree
on subsequent executions of the browser.

FIG. 19 is a flowchart of another aspect method for creat-
ing, processing, storing, and/or retrieving portions of a DOM
tree on subsequent executions of the browser.

FIG. 20 is a component block diagram of an example
receiver device suitable for use with the various embodi-
ments.

FIG. 21 is a component block diagram of an example server
suitable for use with various embodiments.

DETAILED DESCRIPTION

Various aspects are now described with reference to the
drawings. In the following description, for purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of one or more aspects. It
may be evident; however, that such aspect(s) may be prac-
ticed without these specific details.

The described aspects relate to fetching and rendering a
page, such as a web page having web resources and data
items. In addition, the described aspects provide a virtual
effect of transitioning between web pages, e.g., providing
links for a user to move forward and backward between web
pages. The web page is rendered according to a correspond-
ing document object model (DOM), which defines the com-
ponents, relative structure, and behavior of the respective
components that define the page. Different instances of the

10

15

20

25

30

35

40

45

50

55

60

65

6

same page may share some common portions of the DOM,
while having other unique portions that differentiate one
instance over the next instance of the page.

According to one or more aspects, apparatus, and methods
of rendering a page provide a web engine or other compo-
nents operable to create a shared DOM that may be used by
two or more instances of the page. The shared DOM includes
a static DOM portion that is common to the different
instances of a page, and one or more dynamic DOM portions
that are unique to a respective one or more instances of the
page. As such, the described aspects improve efficiency in
page rendering by reusing the static DOM portion in render-
ing a new instance of a page that corresponds to a stored or
cached DOM, which can be based on a previously processed,
different instance of the same page, thereby avoiding having
to create an entirely new DOM for each instance of the page.

For example, these aspects may be described with refer-
ence to a use case such as a mobile shopping application
executed by a mobile phone. It should be understood, how-
ever, that this example use case is for illustration only, and that
many other use cases exist. In the mobile shopping applica-
tion example, web pages corresponding to the mobile shop-
ping application may include a tree or hierarchy of different
types of pages, such as a main page having a catalog listing,
one or more catalog pages having item listings and/or other
catalog listings, and one or more item detail pages, which may
also link to other item detail pages, and/or additional detail
pages such as pricing or purchasing pages. Different
instances of the same page, such as an item detail page for a
first game and an item detail page for a second game, may
share similar structure and possibly some similar data, but
they may also each have unique data, such as a name of each
respective game. As such, typically, each item detail page has
adifferent, corresponding DOM. In the present aspects, how-
ever, the item detail pages instead have a shared DOM that
includes a static DOM portion corresponding to common
DOM elements between the different instances of the page,
and one or more dynamic DOM portions that associate the
unique data items with the respective instance of the page. For
example, in this case, the static DOM portion may comprise
asame layout of the first game item detail page and the second
game item detail page, while the dynamic data items, such as
the first game name and the second game name, are repre-
sented by a dynamic DOM portion.

In other words, in one aspect, when a unique instance of a
page (for example, an “itemdetail” page) has never been
fetched or cached on a computer device, and that instance of
the page is requested, the described aspects provide a behav-
ior that results in fetching the page data (for example, includ-
ing the hyper text markup language (html) or extensible html
(xhtml), cascading sheet style (css), and javascript as)) and
creating a static portion of a document object model (DOM)
from the xhtml and css. This static portion of the DOM is
stored in cache and can be reused. For that page, the js is then
executed, resulting in one or more data requests (for example,
an XMLHttpRequest (XHR)). The initial js and the handling
of each of the one or more responses results in the creating of
one or more dynamic portions of the DOM for that instance of
the page. Then, when a second instance of the page is
requested, the static DOM portion can be reused, and the js is
executed for the new query string of the request correspond-
ing to the second instance of the page, resulting in one or more
new data requests and the creating of one or more dynamic
portions of the DOM for the new instance of the page. As a
result, the shared DOM includes at least one static portion and

US 9,171,097 B2

7

one or more dynamic portions, enabling the DOM to define a
shared DOM for use in rendering different instances of the
page.

Accordingly, in an aspect, reuse of the initial or static state
or portions of the DOM reduces page transitioning time. In
one or more aspects, state or DOM portion reuse may be
achieved by maintaining separate, or alternatively integrated,
data structures corresponding to the static and dynamic states
or portions of the DOM.

Further, in one or more aspects, one or more advantages
may include: no or low memory overhead, as only a table of
properties are copied; fast loading of the page, as only one
time parsing of HTML and applying of CSS rules occurs;
cleaner and less complex code as compared to other imple-
mentations, as different DOMs do not need to be created for
different instances of the same page; no extra walk through
the DOM tree, as the rendering can focus on updating the
dynamic DOM portions considering the static DOM portions
do not change; and dynamic properties are created on demand
on a page load and are removed on an existing walk through
the DOM on navigating back to an instance of the page.

Optionally, in some aspects, the DOM and corresponding
page content may be cached, and the cache may include a
derivative cache or a structured cache. The derivative cache
may store content derived from received content. For
example, in one aspect, upon receipt of raw content, such as
but not limited to xhtml, cascading sheet styles or javascript,
the computer device may further process the raw content to
generate derivative content. For instance, in an aspect, it
should be appreciated that the derivative content may include
the static portion of the DOM, e.g., the static portion of the
DOM may be created and/or derived from the received xhtml
and css. It may be determined to store the derivative content,
for example, in the derivative cache, as the resources
expended to generate derivative content are relatively expen-
sive. In one aspect, this caching of derivative content may
assist in efficiently facilitating subsequent usage of the
cached content through the use of this pre-prepared, deriva-
tive content, such as if the content is used frequently.

Another example of derivative content may include the
computer device fetching a program to be run when it is
retrieved from cache. Rather than compiling the fetched pro-
gram every time computer device retrieves the program from
the cache, the computer device may compile the program.
The compiled program, or derivative content, may be stored
in the derivative cache, ready for subsequent use. Addition-
ally, the derivative content may be associated with the
received source.

In another aspect, computer device cache may further
include a structured cache. The structured cache allows for
storage of content in a manner such that retrieving programs
or the like may selectively choose useful portions of the
cached content for retrieval. For example, without the present
apparatus and methods, the cached content may appear as
semantically opaque content, thereby prohibiting selective
retrieval of portions of the cached content. In one aspect, the
structured cache can be organized in such a way as to allow
selected known portions of a content item stored in the struc-
tured cache to be retrieved without requiring retrieval of the
entire content item.

For example, assume content with a well known structure,
such as java script object notation (JSON) content, is stored in
the structured cache. Further assume a program or the like
may only use a small portion of the JSON content, such as
content associated with the manufacturer, the title, or the like.
The structured cache allows for the selective removal of only

10

20

40

45

8

the portion of the content useful to the program, thereby
reducing any intermediary processing that may have been
required.

In another example, a content provider may introduce ori-
gin-server generated entry points with content transmitted to
the computer device. As such, when content with origin-
server generated entry points is stored in a structured cache,
subsequent removal of portions defined by the entry points
may be facilitated.

Optionally, in some aspects, the described apparatus and
methods may further include pre-fetching operations that can
be performed to fetch and process a page prior to receipt of a
request for that page.

Optionally, in some aspects, the described apparatus and
methods may further include pre-derivation operations that
can be performed to parse a web page into a DOM and cache
the corresponding DOM prior to receipt of a request for that
page.

Optionally, in some aspects, the described apparatus and
methods may further include both the pre-fetching and the
pre-derivation operations.

The pre-fetching operation and/or the pre-derivation
operation can further increase the speed in rendering an
instance of a page, thereby improving a user experience when
transitioning from one page to another page.

In a further aspect, methods and devices for accelerating
webpage rendering by a browser store document object
model (DOM) tree structures and computations of rendered
pages, and compare portions of a DOM tree of pages being
render to determining if portions of the DOM tree structures
match. If a DOM tree of a webpage to be rendered matches a
DOM tree stored in memory, the computations associated
with the match DOM tree may be recalled from memory,
obviating the need to perform the calculations to render the
page. A tree isomorphism algorithm may be used to recognize
DOM trees stored in memory that match the DOM tree of the
webpage to be rendered. A discussed above, reusing render-
ing computations may significantly reducing the time and
resources required for rendering web pages. Identifying reus-
able portions of calculation results based on DOM tree iso-
morphism enables the browser to reuse stored webpage ren-
dering calculations even when URLs do not match, thereby
increasing the amount of rendering computations that can be
reused by the browser.

Thus, the present aspects can efficiently render different
instances of a page by reusing a static portion of the DOM,
thereby saving processing or communication resources, or
both.

As used in this application, the terms “component,” “mod-
ule,” “system” and the like are intended to include a com-
puter-related entity, such as but not limited to hardware, firm-
ware, a combination of hardware and software, software, or
software in execution. For example, a component may be, but
is not limited to being, a process running on a processor, a
processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a computing device and the comput-
ing device can be a component. One or more components can
reside within a process and/or thread of execution and a
component may be localized on one computer and/or distrib-
uted between two or more computers. In addition, these com-
ponents can execute from various computer readable media
having various data structures stored thereon. The compo-
nents may communicate by way of local and/or remote pro-
cesses such as in accordance with a signal having one or more
data packets, such as data from one component interacting

US 9,171,097 B2

9

with another component in alocal system, distributed system,
and/or across a network such as the Internet with other sys-
tems by way of the signal.

Furthermore, various aspects are described herein in con-
nection with a terminal, which can be a wired terminal or a
wireless terminal. A terminal can also be called a system,
device, subscriber unit, subscriber station, mobile station,
mobile, mobile device, remote station, remote terminal,
access terminal, user terminal, terminal, communication
device, user agent, user device, or user equipment (UE). A
wireless terminal may be a cellular telephone, a satellite
phone, a cordless telephone, a Session Initiation Protocol
(SIP) phone, a wireless local loop (WLL) station, a personal
digital assistant (PDA), a handheld device having wireless
connection capability, a computing device, or other process-
ing devices connected to a wireless modem. Moreover, vari-
ous aspects are described herein in connection with a base
station. A base station may be utilized for communicating
with wireless terminal(s) and may also be referred to as an
access point, a Node B, or some other terminology.

In addition, the word “exemplary” is used herein to mean
serving as an example, instance, or illustration. Any aspect or
design described herein as “exemplary” is not necessarily to
be construed as preferred or advantageous over other aspects
or designs. Rather, use of the word exemplary is intended to
present concepts in a concrete fashion. Moreover, the term
“or” is intended to mean an inclusive “or” rather than an
exclusive “or.”” That is, unless specified otherwise, or clear
from the context, the phrase “X employs A or B” is intended
to mean any of the natural inclusive permutations. That is, the
phrase “X employs A or B” is satisfied by any of the following
instances: X employs A; X employs B; or X employs both A
and B. In addition, the articles “a” and “an” as used in this
application and the appended claims should generally be
construed to mean “one or more” unless specified otherwise
or clear from the context to be directed to a singular form.

The techniques described herein may be used for various
wireless communication systems such as CDMA, TDMA,
FDMA, OFDMA, SC-FDMA, and other systems. The terms
“system” and “network” are often used interchangeably. A
CDMA system may implement a radio technology such as
Universal Terrestrial Radio Access (UTRA), cdma2000, etc.
UTRA includes Wideband-CDMA (W-CDMA) and other
variants of CDMA. Further, ¢cdma2000 covers 1S-2000,
1S-95, and 1S-856 standards. A TDMA system may imple-
ment a radio technology such as Global System for Mobile
Communications (GSM). An OFDMA system may imple-
ment a radio technology such as Evolved UTRA (E-UTRA),
Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE
802.16 (WiMAX), IEEE 802.20, Flash-OFDM , etc. UTRA
and E-UTRA are part of Universal Mobile Telecommunica-
tion System (UMTS). 3GPP Long Term Evolution (LTE) is a
release of UMTS that uses E-UTRA, which employs
OFDMA on the downlink and SC-FDMA on the uplink.
UTRA, E-UTRA, UMTS, LTE, and GSM are described in
documents from an organization named “3rd Generation
Partnership Project” (3GPP). Additionally, cdma2000 and
UMB are described in documents from an organization
named “3rd Generation Partnership Project 2 (3GPP2). Fur-
ther, such wireless communication systems may additionally
include peer-to-peer (e.g., mobile-to-mobile) ad hoc network
systems often using unpaired unlicensed spectrums, 802.xx
wireless LAN, BLUETOOTH and any other short- or long-
range, wireless communication techniques.

Various aspects or features will be presented in terms of
systems that may include a number of devices, components,
modules, and the like. It is to be understood and appreciated

20

30

40

45

55

10

that the various systems may include additional devices, com-
ponents, modules, etc. and/or may not include all of the
devices, components, modules etc. discussed in connection
with the figures. A combination of these approaches may also
be used.

Referring to FIG. 1, in one aspect, apparatus and methods
for rendering a page, such as a web page, include a computer
device 10 having a portal component 12 that interacts with a
web engine 14 to enable presentation of one or more instances
of a page 13, such as a web page, on a display 15. For
example, displayed page 13 may be obtained via a commu-
nications network 17 from a web server 16 and a data server
18. Web server 16 and data server 18, which may be separate
or integrated components, respectively store web resources
20 and 22 and data items 24 and 26 that respectively define a
first page instance 28 and a second page instance 30. For
example, web resources 20 and 22 may include anything
needed to construct a static portion of the page, e.g. an empty
page template that can be filled with data, while data items 24
and 26 may include any content used to fill the page, e.g. one
or more dynamic portions of the page. As such, all or some
portion of web resources 20 and 22 are common to both first
page instance 28 and second page instance 30, while all or
some portion of data items 24 and 26 are unique to the respec-
tive page instance.

More specifically, portal component 12 communicates a
received request 32, such as based on a user input or a launch-
ing of portal component 12, which identifies a requested
instance of a page 34 to web engine 14. For example, the
received request 32 may include a first portion that defines a
web resource, such as a universal resource locator (URL), and
a second portion that defines specific data to fetch, such as a
query string. Web engine 14 includes a match determiner 36
that executes to determine if the requested instance of the
page 34, as identified by request 32, corresponds to a stored
document object model (DOM) 38 for the page. DOM 38
defines a tree or hierarchy of one or more nodes in child-
parent relationship, including properties and/or attributes of
the respective DOM node and its style attributes, which
enables rendering of the page. If the requested instance of the
page 34 corresponds to stored DOM 38, then an iterator
component 40 identifies one or more static portion(s) 42 of
DOM 38 that is/are common to both the requested instance of
the page 34 and one or more stored instance(s) of the page 44.
Optionally, it should be noted that DOM 38 may further
include one or more dynamic portions 46 specific to each of
the one or more stored instances of the page 44. For example,
stored instance of the page 44 may correspond to first page
instance 28, while requested instance of the page 34 may
correspond to second page instance 30. Further, based on
request 32, iterator component 40 identifies, creates, and
stores one or more dynamic portions 48 specific to the
requested instance of the page 34. As such, DOM 38 defines
arelationship between different instances of'a page and one or
more respective corresponding dynamic DOM portions that
are uniqueto each page instance, and further corresponding to
one or more static DOM portions that are shared by more than
one instance of the page. Thus, DOM 38 may be referred to as
a shared DOM, as DOM 38 includes a static DOM portion
that is the same for both the stored instance of the page 44 and
the requested instance of the page 34.

Alternatively, if match determiner 36 determines that
requested instance of the page 34 does not match or relate to
any stored DOM, then match determiner 36 operates to create
and store a new DOM 39 for that page. New DOM 39, which
may have a similar structure as shared DOM 38, may then

US 9,171,097 B2

11

later be referenced by match determiner 36 to determine a
match with subsequent requests for instances of pages.

In these aspects, shared DOM 38 may allow for faster
rendering of the requested instance of the page 34, as web
engine 14 does not need to reconstruct an entire DOM struc-
ture for a new instance of a page corresponding to a DOM
already stored. Instead, web engine 14 can reuse static DOM
portion 42, and only needs to perform the processing related
to the one or more dynamic DOM portion(s) 48 correspond-
ing to the requested instance of the page 34.

Additionally, computer device 10 may include a scripting
engine 50 operable to perform scripting functionality. For
example, web engine 14 interacts with scripting engine 50 to
load script corresponding to the page, which scripting engine
50 executes to register the corresponding script functions. In
response to an on load event received from web engine 14,
scripting engine 50 further runs the page script and generates
send calls to initiate the fetching of corresponding dynamic
data for the instance of the web page. Further, after receiving
the dynamic data, scripting engine 50 is operable to apply the
data, for example via a DOM application program interface
(API), and write the data to the corresponding DOM. Accord-
ingly, based on the written dynamic data for the respective
instance of the page, web engine 14 creates and stores one or
more dynamic DOM portions in association with the respec-
tive page instance.

Additionally, computer device 10 includes a rendering
engine 52 that interacts with web engine 14. For example, in
response to a request from web engine 14, rendering engine
52 is operable to paint one or more parts of a respective page
that correspond to one or more static DOM portions, and/or
that correspond to one or more dynamic DOM portions for the
respective instance of the page. Further, rendering engine 52
interacts with display 15 to present the painted portions of the
page, thereby presenting a respective instance of the page.

Thus, by providing a DOM having a shared static portion,
the described aspects may save communication resources in
fetching web resources corresponding to each new instance of
a page, or the described aspects may save processing
resources in creating portions of the DOM by reusing the
static DOM portion, or both.

Referring to FIG. 2, in one aspect, shared DOM 38 may be
further explained as representing a template structure 60
defined by a plurality of nodes, such as nodes 62, 64, 66, 68,
70 and 72, and which further represents different instances of
apage, such as first page instance 28, second page instance 30
and third page instance 74. Each page instance, e.g. 28, 30 and
74, share one or more common nodes, such as nodes 62, 64,
66, 68 and 70. The page data respectively associated with
each node for each page instance, however, may differ. For
example, page data 82, 84, 86, 88 and 90 respectively corre-
sponds to nodes 62, 64, 66, 68 and 70 for first page instance
28, while page data 92, 94, 96, 98 and 100 respectively
corresponds to nodes 62, 64, 66, 68 and 70 for second page
instance 30, while page data 102, 104, 106, 108 and 110
respectively corresponds to nodes 62, 64, 66, 68 and 70 for
third page instance 74. Further, it is noted that some page
instances may have more or less nodes than other page
instances. For example, in FIG. 2, third page instance 74
includes an additional node 72, having respective page data
112, which is not found in any other page instances.

Shared DOM 38 defines relationships between nodes, page
data, and page instances that provide a simple and efficient
mechanism to identify and construct the different page
instances. For example, shared DOM 38 identifies all of the
nodes for the respective page instances 28, 30 and 74, includ-
ing the shared nodes 62, 64, 66, 68 and 70 and their respective

10

25

40

45

12

relationship to one another, as well as any nodes unique to any
instance, such as node 72. Further, shared DOM 38 includes
static DOM portions 122, 124, 126, 128 and 130, e.g. com-
mon portions, corresponding to each node as well as dynamic
DOM portion or dynamic page data corresponding to each
node, such as dynamic data 82, 92 and 102 respectively
corresponding to instances 28, 30 and 74 for node 62,
dynamic data 84, 94 and 104 respectively corresponding to
instances 28, 30 and 74 for node 64, dynamic data 86, 96 and
106 respectively corresponding to instances 28, 30 and 74 for
node 66, dynamic data 88, 98 and 108 respectively corre-
sponding to instances 28, 30 and 74 for node 68, and dynamic
data 90, 100 and 110 respectively corresponding to instances
28, 30 and 74 for node 70. Additionally, shared DOM 38
includes dynamic DOM portions for unique nodes, such as
dynamic data 112 corresponding to third page instance 74 for
node 72.

Referring to FIG. 3, in one aspect, computer device 10,
such as a mobile or cellular phone, may include a processor
150 for carrying out processing functions associated with one
or more of components and functions described herein. Pro-
cessor 150 can include a single or multiple set of processors or
multi-core processors. Moreover, processor 150 can be
implemented as an integrated processing system and/or a
distributed processing system.

Computer device 10 may further include a memory 152,
such as for storing local versions of applications being
executed by processor 150, and/or for long term storage of
data, instructions, and/or applications not currently being
executed or utilized by processor 150. In one aspect, memory
152 may further comprise derivative cache 155. Upon receipt
of content that is intended to be cached, computer device 10
may further process the received content to generate derived
content and store the derivative content 157 in the derivative
cache 155. In one aspect, this processing may assist to effi-
ciently facilitate subsequent usage of the cached content
through pre-preparation of derivative content 157 that is often
used. In another aspect, memory 152 may include structured
cache 159. Structured cache 159 may allow for storage of
content in a manner such that retrieval may be selectively
done through choosing select known portions of the content
for retrieval. In one aspect, structured cache 159 is organized
in such a way as to allow selected known portions of a content
item stored in the structured cache 159 to be retrieved without
requiring retrieval of the entire content item. Memory 152 can
additionally store protocols and/or algorithms associated
with estimating and/or utilizing a channel (e.g., performance
based, capacity based, etc.). In one aspect, memory 152 may
further comprise raw content storage 151. Raw content stor-
age 151 may allow for storage of received raw content.

It will be appreciated that the data store (e.g., memory 152)
described herein can be either volatile memory or nonvolatile
memory, or can include both volatile and nonvolatile
memory. In one aspect, a dual memory model may be used
where a first layer is a file system based non-volatile memory
and the second layer is a heap structure volatile memory. In
such an aspect, raw received content may be stored in the first
layer and derivative content may be stored in the second layer.
Furthermore, in such an aspect, the second layer may be
accessed more quickly than the first layer. By way of illustra-
tion, and not limitation, nonvolatile memory can include read
only memory (ROM), programmable ROM (PROM), electri-
cally programmable ROM (EPROM), electrically erasable
PROM (EEPROM), or flash memory. Volatile memory can
include random access memory (RAM), which acts as exter-
nal cache memory. By way of illustration and not limitation,
RAM is available in many forms such as synchronous RAM

US 9,171,097 B2

13

(SRAM), dynamic RAM (DRAM), synchronous DRAM
(SDRAM), double data rate SDRAM (DDR SDRAM),
enhanced SDRAM (ESDRAM), Synchlink DRAM
(SLDRAM), and direct Rambus RAM (DRRAM). The
memory 152 of the subject systems and methods may com-
prise, without being limited to, these and any other suitable
types of memory.

Further, computer device 10 may include a communica-
tions component 154 that provides for establishing and main-
taining communications with one or more entities utilizing
hardware, software, and services as described herein. Com-
munications component 154 may carry communications
between components on computer device 10, as well as
between computer device 10 and external devices, such as
devices located across a communications network and/or
devices serially or locally connected to computer device 10.
For example, communications component 154 may include
one or more buses, and may further include interfaces, one or
more transmitters or transmit chain components and one or
more receivers or receive chain components operable for
interfacing with external devices. For example, such trans-
mitter and receivers may enable wired or wireless communi-
cations according to one or more technologies or protocols.

Computer device 10 may additionally include a user inter-
face component 156 operable to receive inputs 158 from a
user of computer device 10, and further operable to generate
outputs 160 for presentation to the user. User interface com-
ponent 156 may include one or more input devices, including
but not limited to a keyboard, a number pad, a mouse, a
touch-sensitive display, a navigation key, a function key, a
microphone, a voice recognition component, any other
mechanism capable of receiving an input from a user, or any
combination thereof. Further, user interface component 156
may include one or more output devices, including but not
limited to a display, a speaker, a haptic feedback mechanism,
a printer, any other mechanism capable of presenting an out-
put to a user, or any combination thereof.

Additionally, as noted above, computer device 10 may
include portal component 12, which may be one or any com-
bination of a web browser, a widget or a mobile widget, or a
web application. Portal component 12 is operable to interface
with a user of computer device 10, as well as with other
components of computer device 10, to enable rendering of a
web page.

Web engine 14, as discussed above, manages the determi-
nation of matches for DOMs, and the creation and storage of
DOMs. Optionally, in some aspects, web engine 14 may
include a fetch manager 162 to manage timing and perfor-
mance of fetch operations. For example, fetch manager 162
may enable pre-fetching of content for the page having a link
that was just clicked from a referring page, where the refer-
ring page includes the URLs to perform the pre-fetching. In
an aspect, for instance, fetch manager 162 may execute a
pre-fetch discovery call in the javascript of the referring page.
In another aspect, for instance, fetch manager 162 may tag or
order URLs to fetch on a page so these tags or URLs can be
processed in page rendering prior to receiving a request for
the respective page. For example, fetch manager 162 may
include algorithms or functions to determine relationships
between pages, e.g. adjacent pages in a list, adjacent pages in
a hierarchy, etc., in order to determine what to pre-fetch and
when to pre-fetch. In other aspects, the described apparatus
and methods may include in the HTML head of a current page
a manifest of the known URLs, which will be analyzed by
fetch manager 162 for pre-fetching. In another aspect, the
described apparatus and methods may include in the HTML
head of a referring page a structured manifest of the URLs for

10

15

20

25

30

35

40

45

50

55

60

65

14

each reachable page, which will be analyzed by fetch man-
ager 162 to execute pre-fetching for each reachable page. In
further derivation of this aspect, the described apparatus and
methods may separate out the local ‘next page’ manifest from
the page metadata, inserting this in as a getPageManifest()
call to a GRS. This will allow the server to tune the prefetch
order without having to update the page’s xhtml page. This is
another URL, so expiry and ifmodified-since can control the
caching of this ‘caching metadata’ resource. In another
aspect, the described apparatus and methods may include
retrieving this metadata with a broader pre-fetch policy call.
Such a policy update may include all the pre-fetch ordering
for the whole template set. The pre-fetch ordering may be
keyed and fetched initially with the bootstrap manifest.

Optionally, in some aspects, web engine 14 may include a
derivation manager 164 to pre-derive a DOM or portions of a
DOM prior to request of the respective instance of the page.
For example, a big part of the rendering delay has to do with
getting the web document parsed into a DOM and ready to
render. Derivation manager 164 includes algorithms or func-
tions that provide a layer in managing the derivation of web
pages into DOM and caching the DOM prior to when that
page is needed. Derivation manager 164 enables such deriva-
tion occur in a smart way, likely not when first downloaded
via directive from the manifest, but instead the derivation and
caching may occur when web engine 14 is relatively unused
and the probability of the respective page being needed is
high. For example, the algorithms or functions of derivation
manager 164 may determine relationships between pages,
e.g. adjacent pages in a list, adjacent pages in a hierarchy, etc.,
in order to determine what to pre-derive and when to pre-
derive one or more pages.

It should be noted that fetch manager 162 and derivation
manager 164 may be combined in the same computer device
10 to improve the performance for first runs of a page in a
session.

Computer device 10 can further comprise content handler
166 to assist in processing of content prior to caching. In one
aspect, content handler 166 allows the computer device 102 to
determine whether to generate derivative content 157 from
the received raw content 151. Further, content handler 166
may receive processing instructions 168 from a communica-
tions network. In such an aspect, the communications net-
work may provide processing instructions 168 along with
content to be stored at computer device 102. In one aspect,
processing instructions 168 may allow some server side con-
trol, such as by the communications network, that passes to
the computer device 102 in order to perform transformations
or the like on the raw content 151 at the computer device 102
in a manner that may be more efficient than without the
processing instructions 168. In one aspect, processing
instructions 168 may facilitate associating derivative content
157 with received, raw content 151, so as to allow efficient
subsequent retrieval. For example, processing instructions
168 may be transmitted with an image and may provide
instructions for remapping the image pixels. As such, the size
of the content that is transferred with the processing instruc-
tions may be small. And once the small-sized raw content and
processing instructions are received by the computer device
102, the processing instructions 168 facilitate expanding out
the content into a richer image or a more rich set of content.
Content handler 166 may further include structure reference
169 to assist in the processing of received content. Structure
reference 169 may process received content to facilitate struc-
tured storage in structure cache 159.

Scripting engine 50, such as a javascript engine, manages
the registering of script functions and the running of script of

US 9,171,097 B2

15

a given instance of a page. Rendering engine 52 generates or
paints all or portions of a given instance of a page, and
communicates the results to a component of user interface
156, such as displayed page instance 13 presented on display
15 (FIG. 1).

Turning now to FIG. 4, in operation, in one aspect, a
method 170 of rendering a page includes receiving, at a com-
puter device, a request for a requested instance of a page
(Block 172).

The method further includes determining if the requested
instance of the page corresponds to a document object model
(DOM) for the page stored in a memory. The DOM stored in
memory corresponds to a stored instance of the page and
comprises a static portion that is the same for both the stored
instance and the requested instance of the page (Block 174).

Further, the method includes referencing a dynamic por-
tion of the DOM corresponding to the requested instance if
the requested instance of the page corresponds to the DOM
stored in the memory. The dynamic portion is unique to the
requested instance of the page (Block 176).

The method also includes storing the dynamic portion of
the DOM corresponding to the requested instance of the page
in a relationship with the static portion of the DOM (Block
178). Optionally, the method further includes rendering the
requested instance of the page according to the static portion
of the DOM and the dynamic portion of the DOM corre-
sponding to the requested instance of the page (Block 180).

Referring to FIGS. 5 and 6, in an aspect, a method of
rendering a respective first and second instance of a page
include requesting a first instance of a page (202, 204, 302,
304), such as based on a user input or launching of a portal
application. The method further includes the web engine
determining if the instance of the page corresponds to a DOM
stored in memory or a cache (206, 306). At 207, if the instance
of the page corresponds to a DOM stored in memory or a
cache, e.g., a pre-derived DOM, the method continues to the
paint process (218). However, if the instance of the page does
not correspond to a DOM stored in memory or a cache, a
corresponding GET and response is respectively transmitted
to and received from a web server (208, 210). The response
includes, for example, xhtml, css, and javascript.

In some aspects, at 211, pre-processing of the received
content may be performed, e.g., deriving the received content
to generate derivative content. In one aspect, raw content
obtained from the web server may be accompanied by pro-
cessing instructions. Upon receipt of the raw content from the
web server, a content handler may determine whether addi-
tional processing may be performed prior to or contempora-
neously with caching the received raw content. In one aspect,
the processing instructions assist in at least determining
whether to further process the received raw content. In
another aspect, the received raw content may be stored in a
structured cache as determined by known structure associated
with the raw content, such as may be defined by structure
reference, server generated entry points, or the like. Once the
content handler determines that at least a portion of the
received, raw content may be processed, the content handler
processes the selected portion of the received, raw content to
generate the derivative content. The derivative content may be
stored in a derivative cache. In one aspect, the derivative
content is further associated with the received raw content
and stored accordingly. For example, the derivative content
may include compiled javascript and/or compiled css for
subsequent use in rendering a respective first and second
instance of a page. As discussed below, FIGS. 7-9 illustrate
various methodologies for pre-processing the content.

10

15

20

25

30

35

40

45

50

55

60

65

16

Then, the response data is stored in a cache (212), and a
static DOM portion is created and stored (214). Creating and
storing the static DOM portion may include deriving the
content from the response and transforming the content into a
form capable of being processed by the web engine. For
example, deriving the content from the response may include
parsing the response, e.g., xhtml code, and creating a DOM
from the parsed information. Further, rules may be con-
structed and applied to the DOM for aiding in the creation of
the static DOM. The rules may include, for example, CSS
Rules, among other types of rules. It should be appreciated
that the static DOM may be stored in a memory or a cache for
later use. In one aspect, all or a portion of the static DOM is
pre-processed (211), and thus the static DOM portion may
include derivative content. Alternatively, for the second
instance, the static DOM portion is found and used (316). In
both cases, a paint process is started to paint and display one
or more static DOM portions. More particularly, the web
engine starts the paint process (218, 318) and initiates the
rendering engine to paint the static portion (220, 320). The
rendering engine forwards the painted static portion (222,
322) to the display to display one or more static DOM por-
tions (224, 324). Note that the timing of this painting process
may vary. In addition, the derived css content (211) may be
used for creating static structures and text during the painting
process (220, 320).

Further, after obtaining the response or the stored static
DOM portion, a load script operation is initiated (226, 326),
where the scripting engine registers script functions (228,
328), receives an onload event (230, 330), and then runs a
page script (232, 332). The derived javascript (211) may be
used during the scripting functions (228, 232, 328, 332). An
XHR send event (234, 334) is then transmitted to the web
engine, which checks to see if the data is already stored in a
cache (236, 336). If so, at 237 and 337, the stored data can be
utilized and passed to the scripting engine (244, 344). If not,
then a data fetch and response are respectively transmitted
and received from a data server (238 and 240, 338 and 340).
This can be an XHR call (238) and XHR results (240). In
some aspects, at 241 and 341, pre-processing of the received
content may be performed, as discussed above in 211. As
discussed below, FIGS. 7-9 illustrate various methodologies
for pre-processing the content.

The response data is stored in a cache (242, 342), and the
results are passed to the scripting engine (244, 344), which
applies the data via a DOM API and writes the data to the
cache in the web engine (246 and 248, 346 and 348). The web
engine then creates and stores a dynamic DOM portion for the
given instance for one or more dynamic portions of the data
(250, 350). The web engine may buffer this DOM portion
(252, 352), as painting operations can be resource expensive.
Then, the web engine initiates a paint operation, similar to the
above operation for the static portion, which results in the
given instance of the page being created. The web engine
starts the paint process (254, 354) and initiates the rendering
engine to paint the static portion (256, 356). The rendering
engine forwards the painted static portion (258, 358) to the
display for displaying one or more static DOM portions (260,
360) resulting in the given instance of the page being created
(262, 362). Additionally, it is noted that the derived css con-
tent (241, 341) may be used for creating static structures and
text during the painting process (256, 356).

Optionally, in some aspects, the methods of FIGS. 5 and 6
may include one or more pre-fetching operations (264, 364)
as described above with reference to fetching manager 162
(FIG. 3). It should be noted that the timing in the sequence of
operations of FIGS. 5 and 6 of the pre-fetching operation may

US 9,171,097 B2

17

be changed relative to the illustrated action, based on the
determinations of when such pre-fetching is desired. Further,
it should be noted that the pre-fetching operation may further
include additional GETs and responses, and/or XHR calls and
results, and corresponding prior and subsequent processing,
as described above.

Optionally, in some aspect, the methods of FIGS. 5 and 6
may include one or more pre-derivation operations (266, 366)
as described above with reference to derivation manager 164
(FIG. 3). It should be noted that the timing in the sequence of
operations of FIGS. 5 and 6 of the pre-derivation operations
may be changed relative to the illustrated action, based on the
determinations of when such pre-derivation is desired. Fur-
ther, it should be noted that the pre-derivation operations may
further include additional GETs and responses, and/or addi-
tional XHR calls and results, and corresponding prior and
subsequent processing, as described above.

Turning now to FIG. 7, exemplary method 1000 for facili-
tating efficient local caching is illustrated. At reference
numeral 1002, raw data is received. In one aspect, the data
may be accompanying by processing instructions. The data
may be received by a computer device or the like and the data
may originate from a server, communications network etc.
For example, in an aspect, the raw data may include css and
javascript.

Atreference numeral 1004, the method includes determin-
ing whether the received data is a candidate for local process-
ing. For example, the received data may include processing
instructions prompting further processing. In another aspect,
the received data may be of a known data type prompting
further processing, such as css or javascript. If it is determined
that no further processing is required, then at reference
numeral 1006, the received data may be cached. Additionally
or optionally, in one aspect, received data may be cached
irrespective of whether the data is a candidate for further
processing. By contrast, if at reference numeral 1004 it is
determined that further processing is prompted, then, at ref-
erence numeral 1008, locally derived content is generated
from the received content. In one aspect, processing instruc-
tions may guide the content handler in generating the deriva-
tive content. For example, a received image may be processed
to generate one or more sizes commonly used on a computing
device. In another example, a received program file may be
processed to generate a compiled program for subsequent use
by a computing device. In still another example, a received
font type may be processed to generate various commonly
used color and/or size variations for subsequent use by a
computing device. At reference numeral 1010 at least the
derivative content is stored in the cache. In another aspect, the
derivative content and the received content are stored and
associated to aid in subsequent retrieval. In one aspect, cach-
ing of raw data and one or more derived content items may
improve perceived application performance by eliminating
processing requirements after retrieval for derivative content
items. In still another aspect, the processing instructions are
stored with the derivative content and the received content
and used to associate the derived and received content.

Turning now to FIG. 8, exemplary method 1100 for facili-
tating content modification through processing instructions
before storage in cache is illustrated, according to one aspect.
In one aspect, at reference numeral 1102, a computing device
may request, fetch or the like content to be stored in cache. In
such an aspect, the request may be accompanied with nego-
tiation instructions. For example, the request may be for an
image, with accompanying instructions providing a possible
pixel range of a preferable image. Generally, at reference
numeral 1104, raw data is received. Such data may be accom-

10

15

20

25

30

35

40

45

50

55

60

65

18

panying by processing instructions. In one aspect, these pro-
cessing instructions are generated at least in part in response
to the request negotiation instructions. The data may be
received by a computer device or the like and the data may
originate from a server, communications network, etc.

Next to be described, at reference numeral 1106, it is deter-
mined whether the received data is a candidate for local
processing by analyzing the accompanying processing
instructions. If the processing instructions do not prompt
further processing, then at reference numeral 1108, the
received data may be cached. By contrast, if at reference
numeral 1106 processing instructions prompt additional pro-
cessing, then, at reference numeral 1112, a content handler
may be provided with the processing instructions and the
received content. At reference numeral 1112, locally derived
content, e.g. derivative content, is generated from the raw
content using processing instructions as a guide. As such, a
server or the like may facilitate processing of raw content
after transmission. For example, a received image may be
processed to generate to an image with less granularity by the
processing instructions prompting the content handler to
smooth gradations of the received image.

Atreference numeral 1114, at least the derivative content is
stored in the cache. In another aspect the derived and received
content are stored and associated to aid in subsequent
retrieval. In still another aspect, the processing instructions
are stored with the derived and received content and used to
associate the derived and received content.

Turning now to FIG. 9, exemplary method 900 for facili-
tating structured storage in cache is illustrated. Generally, at
reference numeral 902, semantically opaque data is received.
In one aspect, the data may be accompanying by server gen-
erated entry points to allow structured retrieval of selected
portions. In another aspect, the data may be of a known
structure. The data may be received by a computer device or
the like and the data may originate from a server, content
provider, etc.

Next to be described, at reference numeral 904, it is deter-
mined whether the received data may be associated with a
known structure. For example, the received data may include
server generated entry points or may be of a known structure.
If it is determined that the data is not structured in a manner
allowing further processing, then at reference numeral 906,
the received data may be cached. By contrast, if at reference
numeral 904 it is determined that further processing is
prompted, then, at reference numeral 908, the data structure
may be determined. For example, certain media types may be
defined with known structures that allow for processing to
facilitate selective subsequent retrieval. At reference numeral
910, the received structured content is stored with reference to
its known content.

In one aspect, at reference numeral 912, a request for a
portion of structured content may be received. In such an
aspect, at reference numeral 914 the requested portion of the
structured content may be retrieved. For example, informa-
tion associated with the manufacturer, or the title, or the like
may be selectively retrieved from the structured content in the
cache without removal of the entire content item.

One illustrative example of a mobile shopping application
executed by a mobile phone in accordance with an aspect is
illustrated in FIGS. 10-13. Turning now to FIG. 10, in an
aspect, a main page 500, e.g., a firstinstance of a page, may be
requested by a user and displayed on the mobile device as
discussed above in relation to FIGS. 1-7 above. Main page
500 may include a catalog listing 504 with information relat-
ing to the various items in the catalog. Catalog listing 504 may
include, among other information, a listing of categories of

US 9,171,097 B2

19

data in the catalog, e.g., 506a-5067, promotional information
for items in the catalog, previews, and/or descriptions of
items in the catalog, or items to purchase from the catalog. If
a user wants to view a different catalog listing, a user may
move to a different catalog listings in the shopping applica-
tion by selecting button 502, for example. Alternatively, or in
addition, a user may select, for example, one of the categories
of'data in the catalog, e.g., “New This Week” 506¢, and move
to a catalog page for the selected category. An example of a
catalog page, e.g., a second instance of a page, is illustrated in
FIG. 11.

Referring now to FIG. 11, in an aspect, catalog page 600
may be requested by a user and displayed on the mobile
device, e.g., the user selects catalog page 600 from the main
page 500 (FIG. 10). When catalog page 600 is requested, the
mobile device may determine whether catalog page 600 has
similar structures corresponding to main page 500 and/or
other pages in the shopping application. Upon determining
that the catalog page 600 has similar structures as main page
500, the mobile device may retrieve and reuse the similar
structures of catalog page 600 from the DOM of main page
500. In addition, the mobile device may determine that cata-
log page 600 has structures that are different from main page
500 and may create a DOM for the items unique to catalog
page 600.

Catalog page 600 may include a title 604, e.g., “New This
Week,” describing the listing of items to purchase 608a-608#
and/or categories of items 606. Categories may include, for
example, games, music, videos, best sellers, featured items,
and/or recommended items, among other categories. It
should be appreciated that title 604 may correspond to the
selection the user choose on the main page 500 (FIG. 10). In
addition, the items to purchase 608a-608» may include: a
name 612a-6127n describing the item for purchase; a price
614a-614n for the item; an icon 610a-610r illustrating and/or
describing the item for purchase; displayed ratings 616a-
6107 for the item (e.g., stars or text summarizing data relating
to the quality and/or performance of the item for purchase);
and the supplier for the item, among other information relat-
ing to the items for purchase. It should be appreciated that the
items for purchase may include, for example, games, music,
videos or books, among other items.

For example, the mobile device may determine that the title
604, the listing of items to purchase 608a-608» and/or cat-
egories of items 606 have similar structure as features in main
page 500 (e.g., title 504, button 502 and listings 506a-5067)
and may retrieve and reuse the similar structures from main
page 500 DOM. In addition, the mobile device may determine
that the name of the title 604, e.g., “New This Week”, names
for the games 6124-612#, icons for the games 608a-608x,
prices for the games 614a-6147, and/or the ratings for the
games 6164-6167 are unique to catalog page 600, and thus,
may create a dynamic DOM for the features that are unique to
catalog page 600.

Therefore, the mobile device is creating a dynamic DOM
for the portions of catalog page 600 that are unique to catalog
page 600 and reusing similar structure and/or instances from
the static DOM of main page 500. Thus, allowing for faster
rendering of catalog page 600 since the mobile device does
not need to reconstruct an entire DOM structure for catalog
page 600.

If'a user wants to view a different catalog page or return to
the main page 500, the user may move to different catalogs
page in the shopping application by selecting button 602, for
example. Alternatively, or in addition, a user may select, for
example, one of the categories and/or items listed on the
catalog page 600, e.g., the game “Game #5 Name” 612¢, and

25

35

40

45

20

move to an item page, e.g., another second instance of a page.
Examples of an item page, e.g., a second instance of a page,
are illustrated in FIGS. 12 and 13.

Referring now to FIG. 12, in an aspect, item detail page 700
may be requested by a user and displayed on the mobile
device, e.g., the user selects item detail page 700 from catalog
page 600 (FIG. 11). When item detail page 700 is requested,
the mobile device may determine whether item detail page
700 has similar structures and/or instances corresponding to
catalog page 600, main page 500 and/or other pages in the
shopping application. As discussed above in relation to FIG.
11, the mobile device may retrieve and reuse the similar
structures of catalog page 600 and/or main page 500 from the
DOMs of main page 500 and/or catalog page 600. In addition,
the mobile device may create a DOM for the portions of item
detail page 700 that do not match the structure or items in
catalog page 600 and/or main page 500.

For example, the mobile device may determine that button
702, game name 706, icon 704, price 710 and ratings for the
game 708 on the item detail page 700 may have similar
structure as features as catalog page 600 and may retrieve and
reuse the similar structures from catalog page 600 DOM. In
addition, the mobile device may create a DOM for the por-
tions of item detail page 700 that do not match the structure or
items in catalog page 600 and/or main page 500, e.g., rate this
item option 720, more like these recommendations 716.
Therefore, the mobile device is creating a dynamic DOM for
the portions of item detail page 700 that are unique to item
detail page 700 and reusing similar structure and/or instances
from catalog page 600 and/or main page 500. Thus, allowing
for faster rendering of item detail page 700 since the mobile
device does not need to reconstruct an entire DOM structure
for item detail page 700.

If a user wants to view the previous page, the user may
select button 702 to return to the previous page in the shop-
ping application. Alternatively, or in addition, a user may
select, for example, another item on the item detail page 700,
e.g., the game “Guitar Hero III” 718, and move to another
item detail page, e.g., item detail page 800 illustrated in FIG.
13.

Turning now to FIG. 13, illustrated is another example of
an item detail page 800 in accordance with an aspect. As
discussed above in relation to FI1G. 12, the mobile device may
determine whether item detail page 800 has similar structures
and/or instances corresponding to item detail page 700, cata-
log page 600, main page 500 and/or other pages in the shop-
ping application. The mobile device may retrieve and reuse
the similar structures of item detail page 700, catalog page
600 and/or main page 500 from the DOMs of item detail page
700, main page 500 and/or catalog page 600. In addition, the
mobile device may create a dynamic DOM for the portions of
item detail page 800 that do not match the structure or items
in item detail page 700, catalog page 600 and/or main page
500. For example, in this case, the static DOM portion may
comprise a same layout of item detail page 700, while the
dynamic data items, such as the game name 806, the game
rating 808 and the price for the game 810, are represented by
a dynamic DOM portion.

Referring to FIG. 14, illustrated is an apparatus 400 that
renders pages, such as web pages, received from a web server
and data server via a content provider. In some aspects, for
example, apparatus 400 can reside within a mobile device. As
depicted, apparatus 400 includes functional blocks that can
represent functions implemented by a processor, or software,
or combination thereof (e.g., firmware). Apparatus 400
includes a logical grouping 402 of electrical components that
facilitate receiving web resources and data corresponding to a

US 9,171,097 B2

21

page, and rendering an instance of the page. Logical grouping
402 can include a means for receiving, such as at a computer
device, a request for a requested instance of a page 404.
Further, logical grouping 402 can include a means for deter-
mining if the requested instance of the page corresponds to a
document object model (DOM) for the page stored in a
memory 406, wherein the DOM stored in memory corre-
sponds to a stored instance of the page and comprises a static
portion that is the same for both the stored instance and the
requested instance of the page. Also, logical grouping 402 can
include a means for retrieving a dynamic portion of the DOM
corresponding to the requested instance if the requested
instance of the page corresponds to the DOM stored in the
memory 408, wherein the dynamic portion is unique to the
requested instance of the page. Additionally, logical grouping
402 can include a means for storing the dynamic portion of
the DOM corresponding to the requested instance of the page
in a relationship with the static portion of the DOM 410.
Optionally, logical grouping 402 can include a means for
rendering the requested instance of the page according to the
static portion of the DOM and the dynamic portion of the
DOM corresponding to the requested instance of the page
412. Thus, apparatus 400 can efficiently reuse static DOM
portions in rendering a page, and create and store a shared
DOM having relationships defining one or more dynamic
DOM portions corresponding to a respective one or more
instances of a page.

Additionally, apparatus 400 can include a memory 414 that
retains instructions for executing functions associated with
electrical components 404, 406, 408, 410 and optionally 412.
While shown as being external to memory 414, it is to be
understood that electrical components 404, 406, 408, 410 and
optionally 412 can exist within memory 414.

In addition to the above mentioned caching and processing
techniques, further aspects provide systems, methods, and
devices for improving the performance of a browser through
reuse of HTML computations in addition to the HTML code,
with the HTML computations linked or indexed to corre-
sponding DOM tree structures. In loading a web page, brows-
ers typically execute two high level tasks: fetching the HTML
code through the Internet (herein “network element”) and
performing HTML computations to process the content of the
HTML code (herein “computation element”). Conventional
browsers improve the webpage rendering process by caching
the HTML code received from particular URLs in a local
memory, thereby saving the time to download the HTML and
improving the network element. By caching the HTML code,
browsers may begin rendering a page as soon as they receive
a request to access a uniform resource locator (URL) or
uniform resource identifier (URI) for which corresponding
HTML code is cached. Thus, conventional browsers store
HTML code such that they may begin rendering a page as
soon as they determine that a requested URL/URI matches a
URL/URI component having a link to the stored HTML code
as if the HTML had been received over the internet. However,
such browsers fail to address the computation element,
requiring the computations to be reperformed each time the
same page is rendered. As a result, conventional browsers
only improve rendering times to the extent that the network-
ing element is a performance bottleneck.

Fetching HTML code is a performance bottleneck if data
transmission rates are slower than local processing speeds.
This typically occurs when a lot of data needs to be fetched
over a network having limited bandwidth. However, in recent
years, network bandwidths have improved dramatically. This
is evidenced by 3.5 G and 4 G mobile networks becoming
more and more available, providing a bandwidth in excess of

25

30

40

45

60

22

14.4 Mbps. Also, once the HTML code is cached for a URL,
conventional browsers are unable to render pages any faster,
which can appear to the user that upgrading to a faster net-
work does little to improve webpage rendering times. Web
pages are becoming increasing more complex. Modern web
pages require a substantial amount of computation to parse,
format, and render the content of received web pages. Thus,
the bottlenecks in rendering webpages has shifted from the
network element to the computation element.

The various aspect provide for the efficient mapping and
association of HTML rendering computations to their DOM
tree structures so that the computations calculated for a por-
tion of one page may be efficiently re-used in rendering one or
more portions of subsequent pages based on structural simi-
larities, rather than based on the URLs and/or URIs.

Web browsers generate pages for display by processing
HTML code to calculate and define all of the elements that go
into the display. The time required to calculate the style,
format, and layout requirements of the webpage elements is
often substantial. For example, the combination of layout
calculations and style formatting typically accounts for more
than half of the total computation time in local Web page
processing. Additionally, the process of computing style
properties and applying them to the DOM elements is typi-
cally a recursive and time-consuming process that must be
performed every time a web page is requested and/or ren-
dered. The various aspects eliminate these redundant and
time-consuming processes by storing the computations cal-
culated for a first page and reusing the stored calculations to
render a second page having the same or similar DOM tree
structure (i.e., isomorphic), without requiring any association
between the web page URLs of the first and second pages.

The aspects discussed above with reference to FIGS. 1 and
2 store the DOM tree so that different instances of the same
page (sharing a URL and/or URI) may share static portions of
the same DOM tree. In those aspects, when a unique instance
of a page (e.g., “itemdetail” page) is requested, page data
(e.g., the hyper text markup language (html), cascading sheet
style (css), and javascript (js)) may be fetched and used to
create static portions of a DOM tree. These static portions
may be stored in a cache such that they can be reused. That is,
when a second instance of the stored page is requested, the
static DOM portions of the first instance are reused and one or
more dynamic portions are created specifically for the second
instance. As a result, these aspects allow for defining a DOM
so that the portions of the DOM may be reused for rendering
different instances of the same page. The aspects described
below with reference to FIGS. 15-20 extend the capabilities to
enable reuse of HTML computations even when the URLs or
URIs are different.

In rendering a web page, browsers first parse the HTML
code (whether received via a network or recalled from
memory) to generate a DOM tree. Conventional browsers, as
well as browsers of the various embodiments when the DOM
tree does not match any DOM tree structures in memory, then
process the DOM tree to perform the computations required
to define the features and characteristics of the page to be
rendered. These computations may include, for example,
computing dimensions and styles for each sub-element that is
to be displayed on the page. There are many well known
computations that may be required for any given web page.
These computations may include calculating the layout, iden-
tifying styles, performing CSS matching, and other opera-
tions requiring processor and/or processing intensive com-
puting. In various aspects, these computations along with the
corresponding portions of the DOM tree are stored in
memory. Then each time a page is rendered, the generated

US 9,171,097 B2

23

DOM tree is compared to cached DOM trees to determine if
there are any matches before the computations are performed.
If matching DOM tree structures are identified in memory, the
corresponding HTML calculation results are recalled in
memory and reused, and only those portions of the page’s
DOM tree that is not matched to stored tree are processed to
complete the HTML calculations needed to render the page.
The browsers may identity structural similarities between the
store DOM tree portions and the DOM tree of the requested
page using the well known tree isomorphism algorithms.
Thus, this reuseability determination is made independent of
URLs and/or URIs.

The aspects described below further improve browser per-
formance by storing the resultant computations in a DOM
tree in memory and recognizing based on DOM tree struc-
tures to identify portions of the stored computations that may
be reused to render an accessed webpage, thereby increasing
the amount of HTML rendering calculations available for
reuse by the browser. To achieve this, in addition to caching
the static and dynamic portions of the DOM tree, the actual
computations are stored in memory. In various aspects, the
resultant computations may be cached such that the cached
computations are indexed to their DOM tree (i.e., the DOM
tree that was executed in accomplishing the computations). In
an aspect the results are stored in memory in the form of
key-value (i.e., a tag and a value) pairs. The key or tag iden-
tifies the tree structure elements, while the value is the results
of the HTML calculations for the element. By indexing the
computations to the DOM tree, the cached calculations may
be re-used when rendering any page having a structurally
similar DOM tree portion, independent of the URL or URI
associated with either the originally cached page or the page
to be rendered. Storing the computations indexed to the DOM
tree also allows the structure of stored DOM tree to be quickly
analyzed without requiring any special tags, information
regarding URLs and/or URIs, or any other additional identi-
fication mechanisms.

The various aspects use various well known tree isomor-
phism algorithms to recognize and identify the isomorphic
portions of the DOM tree of the page being rendered and the
DOM tree portions stored in memory (i.e., portions sharing a
similar tree structure) to recognize cached computations that
can be reused. For example, the browser may use the well
known algorithms, such as Alogtime, Aho, Hoperoft, Ullman,
and other isomorphism algorithms described in “The Design
and Analysis of Computer Algorithms,” Addison-Wesley,
1974, the entire contents of which are incorporated herein, for
tree isomorphism to identify matching DOM tree portions.

When a browser recognizes that portions of a current DOM
tree match portions of a stored DOM tree or stored DOM tree
portions, cached computation results corresponding to the
identified portions may be quickly and efficiently recalled
from memory. This may be accomplished by storing the com-
putation results in the form of key values and input values. In
these aspects, the key values and input values used to create
the cached computation results may be compared to key
values and input values of a current page being rendered to
determine if the values are the same so that one or more
portions of the stored computation results can be reused. If
one or more portions of stored computations are determined
to be reusable, the stored computation values are recalled
from memory and used by the browser. When all reusable
HTML computations for the page have been recalled from
memory and all other computations performed by the
browser, the retrieved and performed computation results
may be used to display the page. Combining this capability
with conventional HTML caching capabilities enables

10

15

20

25

30

35

40

45

50

55

60

65

24

browsers to very rapidly display a page without downloading
or computing a newly requested HTML page.

FIG. 15 illustrates a sample portion of a DOM tree 1500
generated by a browser parsing HTML code for a requested
webpage. As illustrated in FIG. 15, when parsing HTML
code, a browser may create a DOM element and/or node for
each heading. In the illustrated example, the HTML code
contains a header section (e.g., <HEAD>. . </HEAD>)and a
body section (e.g., <BODY>.. </BODY>). The body section
contains at least one Div section and at least one Span section,
as illustrated by the Div and Span nodes in the DOM tree
1500. Each of the Div and Span nodes may also contain
sub-sections, as illustrated by the paragraph section of the Div
section. In the process of accomplishing the calculations for
rendering the page, the DOM tree elements (e.g., Body, Div,
Paragraph, etc.) may be traversed to compute the properties
and characteristics of the various page components. For
example, for computing the layout of a requested page, the
DOM tree may be traversed to extract the absolute values for
the heights, widths, and positions (e.g., h=50, w=50, x=500,
y=10) of each element, which are typically dependent on
run-time and environmental factors (e.g., window size) and
cannot be determined ahead of time. In the various aspects,
these calculated positions values may be then stored in a
memory linked to the DOM tree for reuse in rendering future
pages including the same or similar calculations.

FIG. 16 illustrates that calculated values may be stored for
each element in the DOM tree 1500. In the illustrated
example, an absolute position value representing the height,
width, horizontal position (X) and vertical position (Y) of
each element may be stored in memory 1610 as a hash-table,
hash-map, linked-list, binary tree, and/or associated array. In
various aspects, the information may be stored in the memory
1610 as a hash-table and/or hash-map such that the key-value
pairs of the stored information map to the corresponding node
in the DOM tree. For example, the key-value pairs may be
stored such that the key element identifies a DOM tree ele-
ment and locates (e.g., via the hash function of the hash map)
the corresponding value element (e.g., the absolute position
value of the DOM element). In various aspects, the hash-table
and/or hash-map may be well-dimensioned such that the
number of instructions required to identify a value (e.g., abso-
lute position) is independent of the number of elements in the
DOM tree. In various aspects, the hash-table and/or hash-map
may be used to store the DOM trees and their associated
properties in a single unified data structure. Other data struc-
tures or combination of data structures known in the art may
also be used.

FIG. 17 illustrates an aspect method 1700 for creating,
processing, and storing the DOM tree on a first execution of a
browser or first rendition of a particular web page having an
unidentified DOM structure. In method 1700, the browser
may receive HTML code from a remote or local server cor-
responding to a desired web page in block 1702. The browser
may parse the received HTML and create the DOM tree in
block 1704. In block 1706, the browser may process the DOM
tree to complete all the necessarily computations. In block
1708, the browser may cache the computation results in
memory, and compose the DOM tree and/or processed
HTML code for outputting to a display in block 1710. In
block 1712, the browser may display the composed and pro-
cessed HTML code along with all the associated images and
files on an electronic display of the computing device on
which the browser is running.

FIG. 18 illustrates an aspect method 1800 for creating,
processing, storing, and/or retrieving portions of a DOM tree
on a subsequent execution of the browser. In method 1800 in

US 9,171,097 B2

25

block 1802, the browser may receive HTML code from a
server and/or recall HTML code from cache memory. In
block 1804, the browser may parse the HTML code and create
at least a portion of a DOM tree for the received HTML code.
In determination block 1806, the browser may determine
whether the generated portion of the DOM tree matches any
portions of one or more DOM trees stored in memory by
determining whether the DOM tree structures are isomor-
phic. In various aspects, the browser may make this determi-
nation by evaluating the indices of one or more stored DOM
trees. In various aspects, the browser may check hash-keys
associated with the generated portion of the DOM tree against
the hash-keys of one or more portions of the DOM trees
stored in memory. In various aspects, the browser may
execute, or initiate the execution of, more or more isomorphic
algorithms to determine whether portions of the generated
DOM tree match any of the portions of a DOM tree stored in
memory. The execution of the isomorphic algorithms in
determination block 1806 may determine if portions of the
generated DOM tree are structurally identical and/or struc-
turally similar to portions of the DOM trees stored in memory.

Returning to FIG. 18, if it is determined that the generated
portion of the DOM tree does not match the structure of any
of'the DOM trees stored in memory (i.e., determination block
1806="No"), in block 1808, the browser may process the
generated portion of the DOM tree and perform the associ-
ated computations (e.g., calculate the absolute positions of
the elements, styles, perform CSS matching, etc.). In block
1810, the browser may cache the computation results with the
results indexed to the executed potions of the DOM tree.

If, on the other hand, it is determined that the generated
portion of the DOM tree is structurally the same as and/or
structurally similar to of any of the portions of the DOM trees
stored in memory (i.e., determination block 1806="“Yes”), in
block 1812 the browser may recall from memory the cached
computation results corresponding to the matched DOM
index. In determination block 1814, the browser may deter-
mine if the key and/or input data of the matched portions
stored in memory are the same as the key and/or input data of
the generated portions, indicating that the stored computa-
tions are reusable in generating the requested HTML page. If
the key and/or input data of the matched portions stored in
memory are not same as the key and/or input data of the
generated portions (i.e., determination block 1814="No”),
the browser may process the generated DOM tree and per-
form the computations in block 1808. If the keys and/or input
data match (i.e., determination block 1814="Yes”) the
browser may determine if all the necessary computations
have been computed or recalled from memory in determina-
tion block 1816. If all computations are not complete (i.e.,
determination block 1816="“No”), the browser may parse
another section of the HTML code to generate additional
portions of the DOM tree by returning to block 1804. If all the
computations are complete (i.e., determination block
1816="Yes”), the browser may validate the data and compose
the page for rendering in block 1818, and display the page on
an electronic display of a computing device in block 1820.

FIG. 19 illustrates an alternative aspect method 1900 for
creating, processing, storing and/or retrieving portions of a
DOM tree on subsequent executions of the browser. In
method 1900 in block 1902, the browser may receive HTML
code from a cache memory and/or a remote server. In block
1904, the browser may parse the received HTML and gener-
ate one or more portions of a DOM tree based on the received
HTML. In block 1908, the browser may process and compare
the generated DOM tree portions to DOM trees stored in
memory by executing threads/processes that implement iso-

30

35

40

45

55

26

morphic algorithms to determine if portions of the generated
DOM tree match (e.g., are structurally similar to) any por-
tions of DOM trees stored in memory. If structurally similar
and/or identical DOM tree portions (e.g., isomorphic potions)
are not found in the cache memory, the browser may store the
computations in memory indexed to a DOM tree using a data
structures such as one of the example structures described
above. If structurally similar and/or identical DOM tree por-
tions (e.g., isomorphic potions) are found in memory, in
determination block 1910 the browser may extract and/or
retrieve the isomorphic portions from the cache memory and
determine if the keys and/or data input values match. In
various aspects, the DOM trees may be stored in a hash-table
and/or hash-map such that the keys and/or input data will
match whenever one or more portions of the compared DOM
trees are determined to be isomorphic. In these aspects, block
1908 may be combined with determination block 1910 and
block 1912, as illustrated by block 1920.

If it is determined that the keys and/or data input values of
the generated portions of the DOM tree do not match any of
the keys and/or data input values of portions of the DOM trees
stored in the cache memory (i.e., determination step
1910="“No"), the browser may create, process, and/or store
the generated portions by traversing the DOM tree and per-
forming the associated calculations as described above in
method 1700 with reference to FIG. 17. If, on the other hand,
one or more of DOM tree portions are determined to have
matching keys and/or input values (i.e., determination step
1910="Yes”), the browser may pull the values associated
with the matching keys and/or input values from memory in
block 1912. In determination block 1914, the pulled values
(e.g., stored calculations retrieved from memory) may be
validated using one or more known data and/or HTML vali-
dation schemes. If one or more of the validation schemes fails
(i.e., determination block 1914="“No"), the browser may cre-
ate, process, and store the generated portions of the HTML
calculations by traversing the DOM tree and performing the
associated calculations as described above in with method
1700 with reference to FIG. 17. If the data is determined to be
valid (i.e., determination block 1914=“Yes”), the browser
may compose the page in block 1916, and display the result-
ant HTML webpage on an electronic display in block 1918.

FIG. 20 is a system block diagram of a mobile computing
device suitable for use with any of the aspects. A typical
mobile computing device 2000 may include a processor 2001
coupled to internal memory 2002, a display 2003, and to a
speaker 2054. Additionally, the mobile computing device
2000 may include an antenna 2004 for sending and receiving
electromagnetic radiation that may be connected to a wireless
data link and/or cellular telephone transceiver 2005 coupled
to the processor 2001 and a mobile computing device 2024
coupled to the processor 2001. Mobile computing device
2000 typically also include menu selection buttons or rocker
switches 2008 for receiving user inputs.

The aspects described above may also be implemented
within a variety of computing devices, such as a laptop com-
puter 2100 as illustrated in FIG. 21. Many laptop computers
include a touch pad touch surface that serves as the comput-
er’s pointing device, and thus may receive drag, scroll, and
flick gestures similar to those implemented on mobile com-
puting devices equipped with a touch screen display. A laptop
computer 2100 will typically include a processor 2101
coupled to volatile memory 2102 and a large capacity non-
volatile memory, such as a disk drive 2103. The computer
2100 may also include a floppy disc drive 2104 and a compact
disc (CD) drive 2105 coupled to the processor 2101. The
computer device 2100 may also include a number of connec-

US 9,171,097 B2

27

tor ports coupled to the processor 2101 for establishing data
connections or receiving external memory devices, such as a
USB or FireWire® connector sockets, or other network con-
nection circuits 2106 for coupling the processor 2101 to a
network. In a notebook configuration, the computer housing
includes the touchpad 2107, keyboard 2108, and the display
2109 all coupled to the processor 2101. Other configurations
of computing device may include a computer mouse or track-
ball coupled to the processor (e.g., via a USB input) as are
well known.

The processors 2001, 2101 may be any programmable
microprocessor, microcomputer or multiple processor chip or
chips that can be configured by software instructions (appli-
cations) to perform a variety of functions, including the func-
tions of the various embodiments described below. In some
mobile receiver devices, multiple processors 2101 may be
provided, such as one processor dedicated to wireless com-
munication functions and one processor dedicated to running
other applications. Typically, software applications may be
stored in the internal memory 2002, 2102, 2103 before they
are accessed and loaded into the processor 2001, 2101. The
processor 2001, 2101 may include internal memory sufficient
to store the application software instructions.

The various illustrative logics, logical blocks, modules,
and circuits described in connection with the embodiments
disclosed herein may be implemented or performed with a
general purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but, in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration. Additionally, at least one
processor may comprise one or more modules operable to
perform one or more of the steps and/or actions described
above.

Further, the steps and/or actions of a method or algorithm
described in connection with the aspects disclosed herein
may be embodied directly in hardware, in a software module
executed by a processor, or in a combination of the two. A
software module may reside in RAM memory, flash memory,
ROM memory, EPROM memory, EEPROM memory, regis-
ters, a hard disk, a removable disk, a CD-ROM, or any other
form of storage medium known in the art. An exemplary
storage medium may be coupled to the processor, such that
the processor can read information from, and write informa-
tion to, the storage medium. In the alternative, the storage
medium may be integral to the processor. Further, in some
aspects, the processor and the storage medium may reside in
an ASIC. Additionally, the ASIC may reside in a user termi-
nal. In the alternative, the processor and the storage medium
may reside as discrete components in a user terminal. Addi-
tionally, in some aspects, the steps and/or actions of a method
or algorithm may reside as one or any combination or set of
codes and/or instructions on a machine readable medium
and/or computer readable medium, which may be incorpo-
rated into a computer program product.

In one or more aspects, the functions described may be
implemented in hardware, software, firmware, or any combi-
nation thereof. If implemented in software, the functions may
be stored as one or more instructions or code on a non-

10

30

35

40

45

50

65

28

transitory computer-readable medium. Non-transitory com-
puter-readable media include any form of computer storage
media that facilitates transfer of a computer program from
one place to another. A non-transitory storage medium may
be any available media that can be accessed by a computer. By
way of example, and not limitation, such non-transitory com-
puter-readable media may include RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage
or other magnetic storage devices, or any other medium that
can be used to carry or store desired program code in the form
of instructions or data structures and that can be accessed by
a computer. Disk and disc, as used herein, includes compact
disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs usually reproduce
data optically with lasers. Combinations of the above should
also be included within the scope of non-transitory computer-
readable media.

While the foregoing disclosure discusses illustrative
aspects and/or embodiments, it should be noted that various
changes and modifications could be made herein without
departing from the scope of the described aspects and/or
embodiments as defined by the appended claims. Further-
more, although elements of the described aspects and/or
embodiments may be described or claimed in the singular, the
plural is contemplated unless limitation to the singular is
explicitly stated. Additionally, all or a portion of any aspect
and/or embodiment may be utilized with all or a portion of
any other aspect and/or embodiment, unless stated otherwise.

What is claimed is:
1. A method of rendering a page on a computing device,
comprising:

receiving, in a processor of the computing device, a request
to display a web page having a first uniform resource
locator (URL);

receiving software code corresponding to the requested
web page;

parsing the received software code to generate a document
object model (DOM) tree;

determining whether a portion of the generated DOM tree
is isomorphic with one or more portions of a particular
stored DOM tree from a plurality of stored DOM trees,
wherein each of the plurality of DOM trees comprises
relationship data for different instances of a page and
each of the one or more portions of the particular stored
DOM tree refers to one or more dynamic stored DOM
portions that are unique to the different instances of the
page;

retrieving from a memory previously stored HTML calcu-
lations used to process HTML code associated with
isomorphic portions of the particular stored DOM tree
when it is determined that a portion of the generated
DOM tree is isomorphic with one or more portions of the
particular stored DOM tree, wherein the previously
stored calculations used to process HTML code com-
prise one or more of parsing, formatting, and rendering
web-based content for a second instance of the requested
web page having a second URL that is different from the
first URL, wherein the second web page is different from
the requested web page;

retrieving the particular stored DOM tree that was deter-
mined to comprise one or more portions that are isomor-
phic with the portion of the generated DOM tree;

composing the requested webpage using the retrieved
HTML computations and the one or more portions ofthe

US 9,171,097 B2

29

retrieved particular stored DOM tree and the dynami-
cally stored DOM-portions of the retrieved particular
stored DOM tree; and

displaying the composed requested web page on an elec-

tronic display of the computing device.

2. The method of claim 1, wherein:

receiving software code corresponding to the requested

web page comprises receiving HTML code correspond-
ing to the requested web page; and

parsing the received software code to generate a document

object model (DOM) tree comprises parsing the
received HTML code to generate a DOM tree.

3. The method of claim 2, wherein determining whether a
portion of the generated DOM tree is isomorphic with one or
more portions of a particular stored DOM tree from a plurality
of stored DOM trees comprises comparing the generated
DOM tree with DOM tree structures of the particular stored
DOM tree using a tree isomorphism comparison algorithm.

4. The method of claim 2, wherein determining whether a
portion of generated DOM tree is isomorphic with one or
more portions of a particular stored DOM tree from a plurality
of'stored DOM trees comprises determining whether the por-
tion of the generated DOM tree has a structure that is identical
to one or more portions of the particular stored DOM.

5. The method of claim 2, wherein determining whether a
portion of generated DOM tree is isomorphic with one or
more portions of a particular stored DOM tree from a plurality
of'stored DOM trees comprises determining whether the por-
tion of the generated DOM tree is structurally similar to one
or more portions of the particular stored DOM tree.

6. The method of claim 2, further comprising determining
whether key values and input values used to create computa-
tion results of the particular stored DOM tree-equal key val-
ues and input values of the generated DOM tree,

wherein retrieving from the memory previously stored

HTML calculations used to process HTML code asso-
ciated with isomorphic portions of the particular stored
DOM tree is performed only when it is determined that
the key values and input values used to create computa-
tion results of the particular stored DOM tree equal key
values and input values of the generated DOM tree.

7. The method of claim 2, wherein retrieving from the
memory the previously stored HTML calculations associated
with isomorphic portions of the particular stored DOM tree
comprises accessing the memory storing the computation
results of the portions of the DOM trees such that they are
indexed by a computed hash value based on a DOM sub-tree
structure corresponding to portions of the DOM trees.

8. The method of claim 2, further comprising:

completing HTML code computations for the generated

DOM tree when it is determined that the generated
DOM tree is not isomorphic with any of the one or more
portions of the particular stored DOM tree; and

storing the results of the HTML computations indexed with

the generated DOM tree in the memory.

9. The method of claim 8, wherein storing the generated
DOM tree comprises storing at least a portion of the generated
DOM tree in a key-value data structure in which DOM tree
elements are stored in association with the corresponding
HTML computation results.

10. The method of claim 9, wherein the key-value data
structure comprises a hash-map data structure.

11. The method of claim 10, wherein retrieving previously
stored calculations from the memory comprises evaluating
hash-keys associated with nodes of the stored DOM tree that
are isomorphic with the portion of the generated DOM tree.

10

15

20

25

30

35

40

45

55

60

65

30

12. A computing device, comprising:

a memory;

a processor coupled to the memory;

means for receiving a request to display a web page having

a first uniform resource locator (URL);

means for receiving software code corresponding to the

requested web page;

means for parsing the received software code to generate a

document object model (DOM) tree;

means for determining whether a portion of the generated

DOM tree is isomorphic with one or more portions of a
particular stored DOM tree from a plurality of stored
DOM trees, wherein each of the plurality of DOM trees
comprises relationship data for different instances of a
page and each of the one or more portions of the particu-
lar stored DOM tree refers to one or more dynamic
stored DOM portions that are unique to the different
instances of the page;

means for retrieving from a memory previously stored

HTML calculations used to process HTML code asso-
ciated with isomorphic portions of the particular stored
DOM tree when it is determined that a portion of the
generated DOM tree is isomorphic with one or more
portions of the particular stored DOM tree, wherein the
previously stored calculations used to process HITML
code comprise one or more of parsing, formatting, and
rendering web-based content for a second instance ofthe
requested web page having a second URL that is differ-
ent from the first URL, wherein the second web page is
different from the requested web page;

means for retrieving the particular stored DOM tree that

was determined to comprise one or more portions that
are isomorphic with the portion of the generated DOM
tree;

means for composing the requested webpage using the

retrieved HTML computations and the one or more por-
tions of the retrieved particular stored DOM tree and the
dynamically stored DOM portions of the retrieved par-
ticular stored DOM tree; and

means for displaying the composed requested web page on

an electronic display.

13. The computing device of claim 12, wherein:

means for receiving software code corresponding to the

requested web page comprises means for receiving
HTML code corresponding to the requested web page;
and

means for parsing the received software code to generate a

document object model (DOM) tree comprises means
for parsing the received HTML code to generate a DOM
tree.

14. The computing device of claim 13, wherein means for
determining whether a portion of the generated DOM tree is
isomorphic with one or more portions of a particular stored
DOM tree from a plurality of stored DOM trees comprises
means for comparing the generated DOM tree with DOM tree
structures of the particular stored DOM tree using a tree
isomorphism comparison algorithm.

15. The computing device of claim 13, wherein means for
determining whether a portion of the generated DOM tree is
isomorphic with one or more portions of a particular stored
DOM tree from a plurality of stored DOM trees comprises
means for determining whether the portion of the generated
DOM tree has a structure that is identical to one or more
portions of the particular stored DOM tree.

16. The computing device of claim 13, wherein means for
determining whether a portion of generated DOM tree is
isomorphic with one or more portions of a particular stored

US 9,171,097 B2

31

DOM tree from a plurality of stored DOM trees comprises
means for determining whether the portion of the generated
DOM tree is structurally similar to one or more portions of the
particular stored DOM tree.

17. The computing device of claim 13, further comprising
means for determining whether key values and input values
used to create computation results of the particular stored
DOM tree equal key values and input values of the generated
DOM tree,

wherein means for retrieving from the memory previously

stored HTML calculations used to process HTML code
associated with isomorphic portions of the particular
stored DOM tree-comprises means for retrieving the
stored HTML calculations associated with isomorphic
portions of the particular stored DOM tree only when it
is determined that the key values and input values used to
create computation results of the particular stored DOM
tree equal key values and input values of the generated
DOM tree.

18. The computing device of claim 13, wherein means for
retrieving from the memory the previously stored HTML
calculations associated with isomorphic portions of the par-
ticular stored DOM tree comprises means for accessing the
memory storing the computation results of the portions of the
DOM trees such that they are indexed by a computed hash
value based on a DOM sub-tree structure corresponding to
portions of the DOM trees.

19. The computing device of claim 13, further comprising:

means for completing HTML code computations for the

generated DOM tree when it is determined that the gen-
erated DOM tree is not isomorphic with any of the one or
more portions of the particular stored DOM tree; and
means for storing the results of the HTML computations
indexed with the generated DOM tree in the memory.

20. The computing device of claim 19, wherein means for
storing the generated DOM tree comprises means for storing
at least a portion of the generated DOM tree in a key-value
data structure in which DOM tree elements are stored in
association with the corresponding HTMIL computation
results.

21. The computing device of claim 20, wherein means for
storing at least a portion of the generated DOM tree in a
key-value data structure comprising means for storing at least
a portion of the generated DOM tree in a hash-map data
structure.

22. The computing device of claim 21, wherein means for
retrieving previously stored calculations from the memory
comprises means for evaluating hash-keys associated with
nodes of the stored DOM tree that are isomorphic with the
portion of the generated DOM tree.

23. A computing device, comprising:

a memory; and

aprocessor coupled to the memory, wherein the processor

is configured with processor executable instructions to

perform operations comprising:

receiving a request to display a web page having a first
uniform resource locator (URL);

receiving software code corresponding to the requested
web page;

parsing the received software code to generate a docu-
ment object model (DOM) tree;

determining whether a portion of the generated DOM
tree is isomorphic with one or more portions of a
particular stored DOM tree from a plurality of stored
DOM trees, wherein each of the plurality of DOM
trees comprises relationship data for different
instances of a page and each of the one or more por-

10

15

20

25

30

40

45

50

55

60

65

32

tions ofthe particular stored DOM tree refers to one or
more dynamic stored DOM portions that are unique to
the different instances of the page;

retrieving from a memory previously stored HTML cal-
culations used to process HTML code associated with
isomorphic portions of the particular stored DOM tree
when it is determined that a portion of the generated
DOM tree is isomorphic with one or more portions of
the particular stored DOM tree, wherein the previ-
ously stored calculations used to process HTML code
comprise one or more of parsing, formatting, and
rendering web-based content for a second instance of
the requested web page having a second URL that is
different from the first URL, wherein the second web
page is different from the requested web page;

retrieving the particular stored DOM tree that was deter-
mined to comprise one or more portions that are iso-
morphic with the portion of the generated DOM tree;

composing the requested webpage using the retrieved
HTML computations and the one or more portions of
the retrieved stored particular stored DOM tree and
the dynamically stored DOM portions of the retrieved
particular stored DOM tree; and

displaying the composed requested web page.

24. The computing device of claim 23, wherein the proces-
sor is configured with processor-executable instructions to
perform operations such that:

receiving software code corresponding to the requested

web page comprises receiving HTML code correspond-
ing to the requested web page;

parsing the received software code to generate a document

object model (DOM) tree comprises parsing the
received HTML code to generate a DOM tree.

25. The computing device of claim 24, wherein the proces-
sor is configured with processor-executable instructions such
that determining whether a portion of the generated DOM
tree is isomorphic with one or more portions of a particular
stored DOM tree from a plurality of stored DOM trees com-
prises comparing the generated DOM tree with DOM tree
structures of the particular stored DOM tree using a tree
isomorphism comparison algorithm.

26. The computing device of claim 25, wherein the proces-
sor is configured with processor-executable instructions such
that determining whether a portion of the generated DOM
tree is isomorphic with one or more portions of a particular
stored DOM tree from a plurality of stored DOM trees com-
prises determining whether the portion of the generated DOM
tree has a structure that is identical to one or more portions of
the particular stored DOM tree.

27. The computing device of claim 25, wherein the proces-
sor is configured with processor-executable instructions such
that determining whether a portion of generated DOM tree is
isomorphic with one or more portions of a particular stored
DOM tree from a plurality of stored DOM trees comprises
determining whether the portion of the generated DOM tree is
structurally similar to one or more portions of the particular
stored DOM tree.

28. The computing device of claim 25, wherein the proces-
sor is configured with processor-executable instructions to
perform operations further comprising determining whether
key values and input values used to create computation results
of'the particular stored DOM tree equal key values and input
values of the generated DOM tree,

wherein the processor is configured with processor-execut-

able instructions such that retrieving from the memory
previously stored HTML calculations used to process
HTML code associated with isomorphic portions of the

US 9,171,097 B2

33

particular stored DOM tree is performed only when it is
determined that the key values and input values used to
create computation results of the particular stored DOM
tree equal key values and input values of the generated
DOM tree.

29. The computing device of claim 25, wherein the proces-
sor is configured with processor-executable instructions such
that retrieving from the memory the previously stored HTML
calculations associated with isomorphic portions of the par-
ticular stored DOM tree comprises accessing the memory
storing the computation results of the portions of the DOM
trees such that they are indexed by a computed hash value
based on a DOM sub-tree structure corresponding to portions
of the DOM trees.

30. The computing device of claim 25, wherein the proces-
sor is configured with processor-executable instructions to
perform operations further comprising:

completing HTML code computations for the generated

DOM tree when it is determined that the generated
DOM tree is not isomorphic with any of the one or more
portions of the particular stored DOM tree; and

storing the results of the HTML computations indexed with

the generated DOM tree in the memory.

31. The computing device of claim 30, wherein the proces-
sor is configured with processor-executable instructions such
that storing the generated DOM tree comprises storing at least
a portion of the generated DOM tree in a key-value data
structure in which DOM tree elements are stored in associa-
tion with the corresponding HTML computation results.

32. The computing device of claim 31, wherein the proces-
sor is configured with processor-executable instructions such
that the key-value data structure comprises a hash-map data
structure.

33. The computing device of claim 32, wherein the proces-
sor is configured with processor-executable instructions such
that retrieving previously stored calculations from the
memory comprises evaluating hash-keys associated with
nodes of the stored DOM tree that are isomorphic with the
portion of the generated DOM tree.

34. A non-transitory computer readable storage medium
having stored thereon processor-executable software instruc-
tions configured to cause a processor of a computing device to
perform operations comprising:

receiving a request to display a web page having a first

uniform resource locator (URL);

receiving software code corresponding to the requested

web page;

parsing the received software code to generate a document

object model (DOM) tree;

determining whether a portion of the generated DOM tree

is isomorphic with one or more portions of a particular
stored DOM tree from a plurality of stored DOM trees,
wherein each of the plurality of DOM trees comprises
relationship data for different instances of a page and
each of the one or more portions of the particular stored
DOM tree refers to one or more dynamic stored DOM
portions that are unique to the different instances of the
page;

retrieving from a memory previously stored HTML calcu-

lations used to process HTML code associated with
isomorphic portions of the particular stored DOM tree
when it is determined that a portion of the generated
DOM tree is isomorphic with one or more portions of the
particular stored DOM tree, wherein the previously
stored calculations used to process HTML code com-
prise one or more of parsing, formatting, and rendering
web-based content for a second instance of the requested

15

20

25

30

35

40

45

50

55

60

65

34

web page having a second URL that is different from the
first URL, wherein the second web page is different from
the requested web page;
retrieving the particular stored DOM tree that was deter-
mined to comprise one or more portions that are isomor-
phic with the portion of the generated DOM tree;

composing the requested webpage using the retrieved
HTML computations and the one or more portions ofthe
retrieved particular stored DOM tree and the dynami-
cally stored DOM-portions of the retrieved particular
stored DOM tree; and

displaying the composed requested web page on an elec-

tronic display.

35. The non-transitory computer readable storage medium
of claim 34, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that:

receiving software code corresponding to the requested

web page comprises receiving HTML code correspond-
ing to the requested web page; and

parsing the received software code to generate a document

object model (DOM) tree comprises parsing the
received HTML code to generate a DOM tree.

36. The non-transitory computer readable storage medium
of'claim 35, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that determining whether a
portion of the generated DOM tree is isomorphic with one or
more portions of a particular stored DOM tree from a plurality
of stored DOM trees comprises comparing the generated
DOM tree with DOM tree structures of the particular stored
DOM tree using a tree isomorphism comparison algorithm.

37. The non-transitory computer readable storage medium
of'claim 35, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that determining whether a
portion of generated DOM tree is isomorphic with one or
more portions of a particular stored DOM tree from a plurality
of'stored DOM trees comprises determining whether the por-
tion of the generated DOM tree has a structure that is identical
to one or more portions of the particular stored DOM tree.

38. The non-transitory computer readable storage medium
of'claim 35, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that determining whether a
portion of generated DOM tree is isomorphic with one or
more portions of a particular stored DOM tree from a plurality
of'stored DOM trees comprises determining whether the por-
tion of the generated DOM tree is structurally similar to one
or more portions of the particular stored DOM tree.

39. The non-transitory computer readable storage medium
of'claim 35, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations further comprising determining
whether key values and input values used to create computa-
tion results of the particular stored DOM tree equal key values
and input values of the generated DOM tree,

wherein the stored processor-executable instructions are

configured to cause a processor of a computing device to
perform operations such that retrieving from the
memory previously stored HTML calculations used to
process HTML code associated with isomorphic por-
tions of the particular stored DOM tree is performed
only when it is determined that the key values and input
values used to create computation results of the particu-
lar stored DOM tree equal key values and input values of
the generated DOM tree.

US 9,171,097 B2

35

40. The non-transitory computer readable storage medium
of claim 35, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that retrieving from the
memory the previously stored HTML calculations associated
with isomorphic portions of the particular stored DOM tree-
comprises accessing the memory storing the computation
results of the portions of the DOM trees such that they are
indexed by a computed hash value based on a DOM sub-tree
structure corresponding to portions of the DOM trees.

41. The non-transitory computer readable storage medium
of claim 35, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations further comprising:

completing HTML code computations for the generated

DOM tree when it is determined that the generated
DOM tree is not isomorphic with any of the one or more
portions of the particular stored DOM tree; and

storing the results of the HTML computations indexed with

the generated DOM tree in the memory.

10

15

36

42. The non-transitory computer readable storage medium
of'claim 41, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that storing the generated
DOM tree comprises storing at least a portion of the generated
DOM tree in a key-value data structure in which DOM tree
elements are stored in association with the corresponding
HTML computation results.

43. The non-transitory computer readable storage medium
of claim 42, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that the key-value data
structure comprises a hash-map data structure.

44. The non-transitory computer readable storage medium
of claim 43, wherein the stored processor-executable instruc-
tions are configured to cause a processor of a computing
device to perform operations such that retrieving previously
stored calculations from the memory comprises evaluating
hash-keys associated with nodes of the stored DOM tree that
are isomorphic with the portion of the generated DOM tree.

#* #* #* #* #*

